Agda User Manual Release 2.6.2.2

The Agda Team

Jun 03, 2022

Contents

1 Overview 3
2 Getting Started 5
2.1 What is Agda? 5
2.2 Installation 7
2.3 'Hello world’ in Agda 13
2.4 A Taste of Agda 14
2.5 A List of Tutorials 22
3 Language Reference 25
3.1 Abstract definitions 25
3.2 Built-ins 27
3.3 Coinduction 40
3.4 Copatterns 42
3.5 Core language 45
3.6 Coverage Checking 48
3.7 Cubical 51
3.8 Cumulativity 64
3.9 Data Types 66
3.10 Flat Modality 69
3.11 Foreign Function Interface 69
3.12 Function Definitions 75
3.13 Function Types 78
3.14 Generalization of Declared Variables 79
3.15 Guarded Cubical 84
3.16 Implicit Arguments 84
3.17 Instance Arguments 87
3.18 Irrelevance 93
3.19 Lambda Abstraction 98
3.20 Local Definitions: let and where 99
3.21 Lexical Structure 104
3.22 Literal Overloading 107
3.23 Lossy Unification 109
3.24 Mixfix Operators 110
3.25 Module System 113
3.26 Mutual Recursion 118
3.27 Pattern Synonyms 121
3.28 Positivity Checking 123
3.29 Postulates 125
3.30 Pragmas 126
3.31 Prop 129
3.32 Record Types 130
3.33 Reflection 138
3.34 Rewriting 149
3.35 Run-time Irrelevance 151
3.36 Safe Agda 154
3.37 Sized Types 155
3.38 Sort System 157
3.39 Syntactic Sugar 162
3.40 Syntax Declarations 166
3.41 Telescopes 167
3.42 Termination Checking 168
3.43 Universe Levels 170
3.44 With-Abstraction 172
3.45 Without K 185
4 Tools 187
4.1 Automatic Proof Search (Auto) 187
4.2 Command-line options 190
4.3 Compilers 200
4.4 Emacs Mode 203
4.5 Literate Programming 209
4.6 Generating HTML 211
4.7 Generating LaTeX 212
4.8 Interface files 229
4.9 Library Management 230
4.10 Performance debugging 232
4.11 Search Definitions in Scope 233
5 Contribute 235
5.1 Documentation 235
6 The Agda Team and License 241
7 Indices and tables 245
Bibliography 247
Index 249

CHAPTER 1

Overview

Note: The Agda User Manual is a work-in-progress and is still incomplete. Contributions, additions and corrections to the Agda manual are greatly appreciated. To do so, please open a pull request or issue on the GitHub Agda page.

This is the manual for the Agda programming language, its type checking, compilation and editing system and related resources/tools. The latest PDF version of this manual can be downloaded from GitHub Actions page (instruction on how to find them).

You can find a lot of useful resources on Agda Wiki site, like tutorials, introductions, publications and books. If you're new to Agda, you should make use of the resources on Agda Wiki and chapter Getting Started instead of chapter Language Reference.

A description of the Agda language is given in chapter Language Reference. Guidance on how the Agda editing and compilation system can be used can be found in chapter Tools.

CHAPTER 2

2.1 What is Agda?

Agda is a dependently typed programming language. It is an extension of Martin-Löf's type theory and is the latest in the tradition of languages developed in the programming logic group at Chalmers. Other languages in this tradition are Alf, Alfa, Agda 1, Cayenne. Some other loosely related languages are Coq, Epigram, and Idris.

Because of strong typing and dependent types, Agda can be used as a proof assistant, allowing to prove mathematical theorems (in a constructive setting) and to run such proofs as algorithms.

2.1.1 Dependent types

Typing for programmers

Type theory is concerned both with programming and logic. We see the type system as a way to express syntactic correctness. A type correct program has a meaning. Lisp is a totally untyped programming language, and so are its derivatives like Scheme. In such languages, if f is a function, one can apply it to anything, including itself. This makes it easy to write programs (almost all programs are well formed), but it also makes it easy to write erroneous programs. Programs will raise exceptions or loop forever. And it is very difficult to analyze where the problems are.

Haskell or ML and its derivatives like Standard ML and Caml are typed languages, where functions come with a type expressing what type of arguments the program expects and what the result type is.
Between these two families of languages come languages, which may or may not have a typing discipline. Most imperative languages do not come with a rich type system. For example, C is typed, but very loosely (almost everything is an integer or a variant thereof). Moreover, the typing system does not allow the definition of trees or graphs without using pointers.

All these languages are examples of partial languages, i.e., the result of computing the value of an expression e of type T is one of the following:

- the program terminates with a value in the type T
- the program e does not terminate
- the program raises an exception (which has been caused by an incomplete definition - for instance, a function is only defined for positive integers but is applied to a negative integer.
Agda and other languages based on type theory are total languages in the sense that a program e of type T will always terminate with a value in T. No runtime error can occur, and no nonterminating programs can be written (unless explicitly requested by the programmer).

Dependent types

Dependent types are introduced by having families of types indexed by objects in another type. For instance, we can define the type Vec n of vectors of length n. This is a family of types indexed by objects in Nat (a type parameterized by natural numbers).

Having dependent types, we must generalize the type of functions and the type of pairs.
The dependent function space $(a \quad A \quad A) \rightarrow\left(\begin{array}{ll}B & a\end{array}\right)$ is the type of the functions taking an argument a in a type A and a result in B a. Here, A is a type, and B is a family of types indexed by elements in A.

For example, we could define the type of $n \times m$ matrices as a type indexed by two natural numbers. Call this type Mat n m . The function identity, which takes a natural number n as an argument and produces the n x n identity matrix, is then a function of type identity : ($\mathrm{n}:$ Nat) \rightarrow (Mat n n).

Remark: We could, of course, just specify the identity function with the type Nat -> Nat -> Mat, where Mat is the type of matrices, but this is not as precise as the dependent version.
The advantage of using dependent types is that it makes it possible to express properties of programs in the typing system. We saw above that it is possible to express the type of square matrices of length n . It is also possible to define the type of operations on matrices so that the lengths are correct. For instance, the type of matrix multiplication is
$\forall\{i \operatorname{j} k\} \rightarrow($ Mat i j) \rightarrow (Mat j k) $->($ Mat i k)
and the type system can check that a program for matrix multiplication really takes arguments of the correct size. It can also check that matrix multiplication is only applied to matrices, where the number of columns of the first argument is the same as the number of rows in the second argument.

Dependent types and logic

Thanks to the Curry-Howard correspondence, one can express a logical specification using dependent types. For example, using only typing it is possible to define:

- equality on natural numbers
- properties of arithmetical operations
- the type (n : Nat) \rightarrow (PrimRoot n) consisting of functions computing primitive root in modular arithmetic.

Of course, a program of the above type will be more difficult to write than the corresponding program of type Nat -> Nat, which produces a natural number which is a primitive root. However, the difficulty can be compensated by the fact that the program is guaranteed to work: it cannot produce something which is not a primitive root.

On a more mathematical level, we can express formulas and prove them using an algorithm. For example, a function of type (n : Nat) $->$ (PrimRoot n) is also a proof that every natural number has a primitive root.

2.2 Installation

There are several ways to install Agda:

- Using a released source package from Hackage
- Using a binary package prepared for your platform
- Using the development version from the Git repository

Agda can be installed using different flags (see Installation Flags).

Hint: If you want a sneak peek of Agda without installing it, try the Agda Pad

2.2.1 Installation from source

Prerequisites

You need recent versions of the following programs to compile Agda:

- GHC: https://www.haskell.org/ghc/
- Agda has been tested with GHC 8.0.2, 8.2.2, 8.4.4, 8.6.5, 8.8.4, 8.10.7, 9.0.2 and 9.2.2.
- cabal-install: https://www.haskell.org/cabal/
- Alex: https://www.haskell.org/alex/
- Happy: https://www.haskell.org/happy/
- GNU Emacs: http://www.gnu.org/software/emacs/

You should also make sure that programs installed by cabal-install are on your shell's search path.
Non-Windows users need to ensure that the development files for the C libraries zlib and ncurses are installed (see http://zlib.net and http://www.gnu.org/software/ncurses/). Your package manager may be able to install these files for you. For instance, on Debian or Ubuntu it should suffice to run

```
apt-get install zlib1g-dev libncurses5-dev
```

as root to get the correct files installed.
Optionally one can also install the ICU library, which is used to implement the --count-clusters flag. Under Debian or Ubuntu it may suffice to install libicu-dev. Once the ICU library is installed one can hopefully enable the --count-clusters flag by giving the enable-cluster-counting flag to cabal install:

```
cabal install -f enable-cluster-counting
```


Agda User Manual, Release 2.6.2.2

More information on installing the ICU prerequisite (like for other OSs) is available at https://github.com/haskell/ text-icu/blob/master/README.markdown\#prerequisites (retrieved 2022-02-09).

Installing the agda and the agda-mode programs

After installing the prerequisites you can install the latest released version of Agda from Hackage.

Using cabal

For installing the agda and the agda-mode programs using cabal run the following commands:

```
cabal update
cabal install Agda
```

If you use Nix-style Local Builds, by using Cabal ≥ 3.0 or by running cabal $v 2$-install, you'll get the following error when compiling with the GHC backend:

```
Compilation error:
MAlonzo/RTE.hs:13:1: error:
    Failed to load interface for 'Numeric.IEEE'
    Use -v to see a list of the files searched for.
```

This is because packages are sandboxed in \$HOME/.cabal/store and you have to explicitly register required packaged in a GHC environment. This can be done by running the following command:

```
cabal v2-install --lib Agda ieee754
```

This will register ieee754 in the GHC default environment.
You may want to keep the default environment clean, e.g. to avoid conflicts with other installed packages. In this case you can a create separate Agda environment by running:

```
cabal v2-install --package-env agda --lib Agda ieee754
```

You then have to set the GHC_ENVIRONMENT when you invoke Agda:

```
GHC_ENVIRONMENT=agda agda -c hello-world.agda
```

Note: Actually it is not necessary to register the Agda library, but doing so forces Cabal to install the same version of ieee754 as used by Agda.

Warning: If you are installing Agda using Cabal on Windows, depending on your system locale setting, cabal install Agda may fail with an error message:

```
hGetContents: invalid argument (invalid byte sequence)
```

If this happens, you can try changing the console code page to UTF-8 using the command:

```
CHCP 65001
```


Using stack

For installing the agda and the agda-mode programs using stack run the following commands:

```
cabal get Agda-X.Y.Z
cd Agda-X.Y.Z
stack --stack-yaml stack-a.b.c.yaml install
```

replacing X.Y.Z and a.b.c for the Agda version on Hackage and your GHC version, respectively.

Running the agda-mode program

Warning: Intalling agda-mode via melpa is discouraged. It is stronly advised to install agda-mode for emacs as described below:

After installing the agda-mode program using cabal or stack run the following command:

```
agda-mode setup
```

The above command tries to set up Emacs for use with Agda via the Emacs mode. As an alternative you can copy the following text to your .emacs file:

```
(load-file (let ((coding-system-for-read 'utf-8))
    (shell-command-to-string "agda-mode locate")))
```

It is also possible (but not necessary) to compile the Emacs mode's files:

```
agda-mode compile
```

This can, in some cases, give a noticeable speedup.
Warning: If you reinstall the Agda mode without recompiling the Emacs Lisp files, then Emacs may continue using the old, compiled files.

Installing the standard library

Installing the standard library, should you choose to use it, is an additional step using a separate repository.

2.2.2 Prebuilt Packages and System-Specific Instructions

See also https://repology.org/project/agda/versions.

Arch Linux

The following prebuilt packages are available:

- Agda
- Agda standard library

However, due to significant packaging bugs such as this, you might want to use alternative installation methods.

Debian / Ubuntu

Prebuilt packages are available for Debian and Ubuntu from Karmic onwards. To install:

```
apt-get install agda-mode
```

This should install Agda and the Emacs mode.
The standard library is available in Debian and Ubuntu from Lucid onwards. To install:

```
apt-get install agda-stdlib
```

More information:

- Agda (Debian)
- Agda standard library (Debian)
- Agda (Ubuntu)
- Agda standard library (Ubuntu)

Reporting bugs:
Please report any bugs to Debian, using:

```
reportbug -B debian agda
reportbug -B debian agda-stdlib
```


Fedora

Agda is packaged in Fedora (since before Fedora 18).

```
yum install Agda
```

will pull in emacs-agda-mode and ghc-Agda-devel.

FreeBSD

Packages are available from FreshPorts for Agda and Agda standard library.

Nix or NixOS

Agda is part of the Nixpkgs collection that is used by https://nixos.org/nixos. There are two ways to install Agda from nix:

- The new way: If you are tracking nixos-unstable or nixpkgs-unstable (the default on MacOS) or you are using NixOS version 20.09 or above then you should be able to install Agda (and the standard library) via:

```
nix-env -f "<nixpkgs>" -iE "nixpkgs: (nixpkgs {}).agda.withPackages (p: [ p.
\hookrightarrowstandard-library ])"
agda-mode setup
echo "standard-library" > ~/.agda/defaults
```

The second command tries to set up the Agda emacs mode. Skip this if you don't want to set up the emacs mode. See Installation from source above for more details about agda-mode setup. The third command sets the standard-library as a default library so it is always available to Agda. If you don't want to do this you can omit this step and control library imports on a per project basis using an . agda-lib file in each project root.

If you don't want to install the standard library via nix then you can just run:

```
nix-env -f "<nixpkgs>" -iA agda
agda-mode setup
```

For more information on the Agda infrastructure in nix, and how to manage and develop Agda libraries with nix, see https://nixos.org/manual/nixpkgs/unstable/\#agda. In particular, the agda.withPackages function can install more libraries than just the standard library. Alternatively, see Library Management for how to manage libraries manually.

- The old way (deprecated): As Agda is a Haskell package available from Hackage you can install it like any other Haskell package:

```
nix-env -f "<nixpkgs>" -iA haskellPackages.Agda
agda-mode setup
```

This approach does not provide any additional support for working with Agda libraries. See Library Management for how to manage libraries manually. It also suffers from this open issue which the 'new way' does not.

Nix is extremely flexible and we have only described how to install Agda globally using nix-env. One can also declare which packages to install globally in a configuration file or pull in Agda and some relevant libraries for a particular project using nix-shell.

The Agda git repository is a Nix flake to allow using a development version with Nix. The flake has the following outputs:

- overlay: A nixpkgs overlay which makes haskellPackages.Agda (which the top-level agda package depends on) be the build of the relevant checkout.
- haskelloverlay: An overlay for haskellPackages which overrides the Agda attribute to point to the build of the relevant checkout. This can be used to make the development version available at a different attribute name, or to override Agda for an alternative haskell package set.

OS X

Homebrew is a free and open-source software package management system that provides prebuilt packages for OS X . Once it is installed in your system, you are ready to install agda. Open the Terminal app and run the following commands:

```
brew install agda
agda-mode setup
```

This process should take less than a minute, and it installs Agda together with its Emacs mode and its standard library. For more information about the brew command, please refer to the Homebrew documentation and Homebrew FAQ.

By default, the standard library is installed in the folder /usr/local/lib/agda/. To use the standard library, it is convenient to add the location of the agda-lib file/usr/local/lib/agda/standard-library.agda-lib to the $\sim /$. agda/libraries file, and write the line standard-library in the $\sim /$.agda/defaults file. To do this, run the following commands:

```
mkdir -p ~/.agda
echo $(brew --prefix)/lib/agda/standard-library.agda-lib >>~/.agda/libraries
echo standard-library >>~/.agda/defaults
```

Please note that this configuration is not performed automatically. You can learn more about using the standard library or using a library in general.
It is also possible to install with the command-line option keyword --HEAD. This requires building Agda from source.
To configure the way of editing agda files, follow the section Emacs mode.

Note: If Emacs cannot find the agda-mode executable, it might help to install the exec-path-fromshell package by doing $M-x$ package-install RET exec-path-from-shell RET and adding the line (exec-path-from-shell-initialize) to your .emacs file.

Windows

A precompiled version of Agda 2.6.0.1 bundled with Emacs 26.1 with the necessary mathematical fonts, is available at http://www.cs.uiowa.edu/~astump/agda.

2.2.3 Installation of the Development Version

After getting the development version from the Git repository

- Install the prerequisites
- In the top-level directory of the Agda source tree, run:

```
cabal update
make install
```

Note that on a Mac, because ICU is installed in a non-standard location, you may need to set

```
export PKG_CONFIG_PATH="/usr/local/opt/icu4c/lib/pkgconfig"
```

(cf. brew link icu4c) or specify this location on the command line:

```
make install CABAL_OPTS='--extra-lib-dirs=/usr/local/opt/icu4c/lib --extra-
\hookrightarrowinclude-dirs=/usr/local/opt/icu4c/include'
```

You can also add the CABAL_OPTS variable to mk/config.mk (see HACKING.md) instead of passing it via the command line.

To install via stack instead of cabal, copy one of the stack-x.x.x.yaml files of your choice to a stack. yaml file before running make. For example:

```
cp stack-8.10.1.yaml stack.yaml
make install
```


2.2.4 Installation Flags

When installing Agda the following flags can be used:

cpphs

Use cpphs instead of cpp. Default: off.

debug

Enable debugging features that may slow Agda down. Default: off.

enable-cluster-counting

Enable the --count-clusters flag. Note that if enable-cluster-counting is False, then the
-- count -clusters flag triggers an error message. Default: off.

optimise-heavily

Optimise Agda heavily. (In this case it might make sense to limit GHC's memory usage.) Default: off.

2.2.5 Installing multiple versions of Agda

Multiple versions of Agda can be installed concurrently by using the -program-suffix flag. For example:

```
cabal install Agda-2.6.1 --program-suffix=-2.6.1
```

will install version 2.6.1 under the name agda-2.6.1. You can then switch to this version of Agda in Emacs via

```
C-c C-x C-s 2.6.1 RETURN
```

Switching back to the standard version of Agda is then done by:

```
C-C C-x C-s RETURN
```


2.3 'Hello world' in Agda

This section contains two minimal Agda programs that can be used to test if you have installed Agda correctly: one for using Agda interactively as a proof assistant, and one for compiling Agda programs to an executable binary. For a more in-depth introduction to using Agda, see A taste of Agda or the list of tutorials.

2.3.1 Hello, Agda!

Below is is a small 'hello world' program in Agda (defined in a file hello. agda).

```
data Greeting : Set where
    hello : Greeting
greet : Greeting
greet = hello
```

This program defines a data type called Greet ing with one constructor hello, and a function definition greet of type Greeting that returns hello.

To load the Agda file, open it in Emacs and load it by pressing C-c C-l (Ctrl+c followed by Ctrl+l). You should now see that the code is highlighted and there should be a message $* A l l$ done $*$. If this is the case, congratulations! You have correctly installed Agda and the Agda mode for Emacs. If you also want to compile your Agda programs, continue with the next section.

2.3.2 Hello, World!

Below is a complete executable 'hello world' program in Agda (defined in a file hello-world.agda)

```
module hello-world where
open import Agda.Builtin.IO using (IO)
open import Agda.Builtin.Unit using (T)
open import Agda.Builtin.String using (String)
postulate putStrLn : String }->\mathrm{ IO T
{-# FOREIGN GHC import qualified Data.Text as T #-}
{-# COMPILE GHC putStrLn = putStrLn . T.unpack #-}
main : IO T
main = putStrLn "Hello world!"
```

This code is self-contained and has several declarations:

1. Imports of the $\grave{I} O, \top$ and String types from the Agda Builtin library.
2. A postulate of the function type putStrLn.
3. Two pragmas that tell Agda how to compile the function putStrLn.
4. A definition of the function main.

To compile the Agda file, either open it in Emacs and press $C-C C-x C-C$ or run agda --compile hello-world.agda from the command line. This will create a binary hello-world in the current directory that prints Hello world!. To find out more about the agda command, use agda --help.

Note: As you can see from this example, by default Agda includes only minimal library support through the Built in modules. The Agda Standard Library provides bindings for most commonly used Haskell functions, including putStrLn. For a version of this 'hello world' program that uses the standard library, see Building an Executable Agda Program.

2.4 A Taste of Agda

The objective of this section is to provide a first glimpse of Agda with some small examples. The first one is a demonstration of dependently typed programming, and the second shows how to use Agda as a proof assistant. Finally, we build a complete program and compile it to an executable program with the GHC and Javascript backends.

2.4.1 Preliminaries

Before proceeding, make sure that you installed Agda and a compatible version of the standard library.
Agda programs are typically developed interactively, which means that one can type check code which is not yet complete but contain "holes" which can be filled in later. Editors with support for interactive development of Agda programs include Emacs via the Emacs mode, Atom via the agda mode for Atom, Visual Studio Code via the agda mode for VSCode, and Vim via agda-vim.

Hint: If you want a sneak peek of Agda without installing it, try the Agda Pad

Note: In this introduction we use several of Agda's interactive commands to get information from the typechecker and manipulate code with holes. Here is a list of the commands that will be used in this tutorial:

- $\mathrm{C}-\mathrm{C} \quad \mathrm{C}-1$: Load the file and type-check it.
- $\mathrm{C}-\mathrm{c} \mathrm{C}-\mathrm{d}$: Deduce the type of a given expression.
- $\mathrm{C}-\mathrm{C} \quad \mathrm{C}-\mathrm{n}$: Normalise a given expression.
- $\mathrm{C}-\mathrm{c} \mathrm{C}-$, : Shows the type expected in the current hole, along with the types of any local variables.
- $C-c \quad C-c$: Case split on a given variable.
- $\mathrm{C}-\mathrm{C} \quad \mathrm{C}-\mathrm{SPC}$: Replace the hole with a given expression, if it has the correct type.
- $C-c \quad C-r$: Refine the hole by replacing it with a given expression applied to an appropriate number of new holes.
- $\mathrm{C}-\mathrm{C} C-\mathrm{x} \mathrm{C}-\mathrm{C}(\mathrm{C}-\mathrm{x} \quad \mathrm{C}-\mathrm{C}$ in VS Code): Compile an Agda program.

See Notation for key combinations for a full list of interactive commands (keybindings).

2.4.2 Programming With Dependent Types: Vectors

In the code below, we model the notion of vectors (in the sense of computer science, not in the mathematical sense) in Agda. Roughly speaking, a vector is a list of objects with a determined length.

```
module hello-world-dep where
open import Data.Nat using (\mathbb{N; zero; suc)}
data Vec (A : Set): N }->\mathrm{ Set where
    [] : Vec A zero
    _:__: \forall {n} (x : A) (xs : Vec A n) }->\mathrm{ Vec A (suc n)
infixr 5 _::
```

Paste or type the code above in a new file with name hello-world-dep.agda. Load the file (in Emacs C-c $C-1$). This also saves the file. If the agda source code was loaded correctly, you should see that the code is highlighted and see a message *All done* .

Note: If a file does not type check Agda will complain. Often the cursor will jump to the position of the error, and the error will (by default) be underlined. Some errors are treated a bit differently, though. If Agda cannot see that a definition is terminating/productive it will highlight it in light salmon, and if some meta-variable other than the goals cannot be solved the code will be highlighted in yellow (the highlighting may not appear until after you have reloaded the file). In case of the latter kinds of errors you can still work with the file, but Agda will (by default) refuse to import it into another module, and if your functions are not terminating Agda may hang. See Background highlighting for a full list of the different background colors used by Agda.

Tip: If you do not like the way Agda syntax or errors are highlighted (if you are colour-blind, for instance), then you can tweak the settings by typing $M-x$ customize-group RET agda2-highlight RET in Emacs (after loading an Agda file) and following the instructions.

Agda programs are structured into modules. Each Agda file has one top-level module whose name must match the name of the file, and zero or more nested modules. Each module contains a list of declarations. This example has a single top-level module called hello-world-dep, which has three declarations:

1. An open import statement that imports the datatype \mathbb{N} and its constructors zero and suc from the module Data. Nat of the standard library and brings them into scope,
2. A data declaration defining the datatype Vec with two constructors: the empty vector constructor [] and the cons constructor _::-,
3. And finally an infixr declaration specifying the precedence for the cons operation.

Tip: Agda uses Unicode characters in source files (more specifically: the UTF-8 character encoding), such as \mathbb{N}, \rightarrow, and $::$ in this example. Many mathematical symbols can be typed using the corresponding LaTeX command names. To learn how to enter a unicode character, move the cursor over it and enter $M-x$ describe-char or $C-u C-x$ $=$. This displays all information on the character, including how to input it with the Agda input method. For example, to input \mathbb{N} you can type either $\backslash \mathrm{Bbb}\{\mathrm{N}\}$ or $\backslash \mathrm{bN}$. See Unicode input for more details on entering unicode characters.

The datatype Vec

Let us start by looking at the first line of the definition of Vec:

```
data Vec (A : Set) : NN }->\mathrm{ Set where
```

This line declares a new datatype and names it Vec. The words data and where are keywords, while the part Vec (A : Set) : $\mathbb{N} \rightarrow$ Set determines the type of Vec.

Vec is not a single type but rather a family of types. This family of types has one parameter A of type Set (which is the sort of small types, such as \mathbb{N}, Bool, ...) and one index of type \mathbb{N} (the type of natural numbers). The parameter A represents the type of the objects of the vector. Meanwhile, the index represents the length of the vector, i.e. the number of objects it contains.

Together, this line tells us that, for any concrete type B : Set and any natural number $m: \mathbb{N}$, we are declaring a new type Vec B m, which also belongs to Set.

The constructors [] and _::_

Each constructors of a datatype is declared on a separate line and indented with a strictly positive number of spaces (in this case two).

We chose the name [] for the first constructor. It represents the empty vector, and its type is Vec A 0, i.e. it is a vector of length 0 .

The second constructor is a mixfix operator named _::_ (pronounced cons). For any number $n: N$, it takes as input an object of A and a vector of length n. As output, it produces a vector with length suc n, the successor of n. The number n itself is an implicit argument to the constructor _::..

The final declaration with keyword infixr does not belong to the datatype declaration itself; therefore it is not indented. It establishes the precedence of the operator _ $:$._.

Tip: You can let Agda infer the type of an expression using the 'Deduce type' command ($C-c \quad C-d$). First press C-c $C-d$ to open a prompt, enter a term, for instance $3:: 2$:: 1 :: [], and press return. Agda infers its type and return the type $\operatorname{Vec} \mathbb{N} 3$, meaning that the given term is a vector with 3 objects of type \mathbb{N}.

Note: Almost any character can be used in an identifier (like α, \wedge, or $\boldsymbol{\varphi}$, for example). It is therefore necessary to have spaces between most lexical units. For example $3:: 2:: 1::[$] is a valid identifier, so we need to write $3:: 2:$ 1 :: [] instead to make Agda parse it successfully.

The total function lookup

Now that Vec is defined, we continue by defining the lookup function that given a vector and a position, returns the object of the vector at the given position. In contrast to the lookup function we could define in most (nondependently typed) programming languages, this version of the function is total: all calls to it are guaranteed to return a value in finite time, with no possibility for errors.

To define this function, we use the Fin datatype from the standard library. Fin n is a type with n objects: the numbers 0 to $\mathrm{n}-1$ (in unary notation zero, suc zero, ...), which we use to model the n possible positions in a vector of length n.

Now create a new file called hello-world-dep-lookup.agda file and type or paste:

```
module hello-world-dep-lookup where
open import Data.Nat using (\mathbb{N})
open import Data.Vec using (Vec; _::_)
open import Data.Fin using (Fin; zero; suc)
variable
    A : Set
    n : N
lookup : Vec A n }->\mathrm{ Fin n }->\mathrm{ A
lookup (a :: as) zero = a
lookup (a :: as) (suc i) = lookup as i
```

The Vec type that we saw before is actually already in the module Data. Vec of the standard library, so we import it instead of copying the previous definition.

We have declared A and n as generalizable variables to avoid the declaration of implicit arguments. This allows us to use A and n in the type of lookup without binding the names explicitly. More explicitly, the full type of lookup (which we can get by using $C-c \quad C-d$) is:

```
lookup : {A: Set} {n:\mathbb{N}}->V\operatorname{Vec A n }->\mathrm{ Fin n }->\textrm{A}
```

Warning: zero and suc are not the constructors of \mathbb{N} that we saw before, but rather the constructors of Fin . Agda allows overloading of constructor names, and disambiguates between them based on the expected type where they are used.

The definition of the lookup function specifies two cases:

- Either the vector is a :: as and the position is zero, so we return the first object a of the vector.
- Or the vector is a :: as and the position is suc i, so we recursively look up the object at position i in the tail as of the vector.

There are no cases for the empty vector []. This is no mistake: Agda can determine from the type of lookup that it is impossible to look up an object in the empty vector, since there is no possible index of type Fin 0 . For more details, see the section on coverage checking.

2.4.3 Agda as a Proof Assistant: Proving Associativity of Addition

In this section we state and prove the associativity of addition on the natural numbers in Agda. In contrast to the previous section, we build the code line by line. To follow along with this example in Emacs, reload the file after adding each step by pressing $\mathrm{C}-\mathrm{C} \mathrm{C}-1$.

Statement of associativity

We start by creating a new file named hello-world-proof.agda. Paste or type the following code:

```
module hello-world-proof where
```

Now we import the datatype \mathbb{N} and the addition operation _+_, both defined in the Agda Builtin library.

```
open import Data.Nat using (\mathbb{N; __+_)}
```

Next, we import the propositional equality type \equiv_{-}from the module Relation. Binary. PropositionalEquality.

```
open import Relation.Binary.PropositionalEquality using (_三_)
```

Under the Curry-Howard correspondence, the type $\mathrm{x} \equiv \mathrm{y}$ corresponds to the proposition stating that x and y are equal objects. By writing a function that returns an object of type $\mathrm{x} \equiv \mathrm{y}$, we are proving that the two terms are equal.

Now we can state associativity: given three (possibly different) natural numbers, adding the first to the addition of the second and the third computes to the same value as adding the addition of the first and the second to the third. We name this statement + -assoc.

```
+-assoc : Set
+-assoc = \forall(x y z : N ) -> x + (y + z) \equiv (x + y) + z
```

This is not yet a proof, we have merely written down the statement (or enunciation) of associativity.

Proof of associativity

The statement +- assoc is a member of Set, i.e. it is a type. Now that we have stated the property in a way that Agda understands, our objective is to prove it. To do so, we have to construct a function of type +-assoc.

First, we need to import the constructors zero and suc of the already imported datatype \mathbb{N} and the constructor refl (short for reflexivity) and function cong (short for congruence) from the standard library.

```
open import Data.Nat using (zero; suc)
open import Relation.Binary.PropositionalEquality using (refl; cong)
```

To prove +- assoc we need to find an object of that type. Here, we name this object +-assoc-proof.

```
+-assoc-proof : }\forall(\textrm{x}y\textrm{y}:\mathbb{N})->\textrm{x}+(\textrm{y}+\textrm{z})\equiv(\textrm{x}+\textrm{y})+
```

If we load now the file, Agda gives an error: "The following names are declared but not accompanied by a definition: $+-a s s o c-p r o o f "$. Indeed, we have only declared the type of +-assoc-proof but not yet given a definition. To build the definition, we need to know more about holes and case splitting.

Holes and case splitting

We can let Agda help us to write the proof by using its interactive mode. To start, we first write a simple clause so the file can be loaded even if we still do not know the proof. The clause consists of the name of the property, the input variables, the equals symbol $=$ and the question mark ?

```
+-assoc-proof x y z = ?
```

When we reload the file, Agda no longer throws an error, but instead shows the message *All Goals* with a list of goals. We have now entered the interactive proving mode. Agda turns our question mark into what is called a hole $\{\quad\} 0$ with a label 0 . Each hole stands as a placeholder for a part of the program that is still incomplete and can be refined or resolved interactively.

Note: You are not supposed to enter a hole such as \{ \} 0 manually, Agda takes care of the numbering when you load the file. To insert a hole, write either ? or $\{!!\}$ and load the file to make Agda assign a unique number to it.

To get detailed information about a specific hole, put the cursor in it and press $\mathrm{C}-\mathrm{C} \mathrm{C}-$, . This displays the type of the hole, as well as the types of all the variables in scope. In this example we get the information that the goal type is $x+(y+z) \equiv x+y+z$, and there are three variables x, y, and z in scope, all of type \mathbb{N}.

Note: You might wonder why Agda displays the term $(x+y)+z$ as $x+y+z$ (without parenthesis). This is done because of the infix statement infixl $6 __{+}^{+}$that was declared in the imported Agda. Builtin. Nat module. This declaration means that the _+_ operation is left-associative. More information about mixfix operator like the arithmetic operations. You can also check this associativity example.

To continue writing our proof, we now pick a variable and perform a case split on it. To do so, put the cursor inside the hole and press $\mathrm{C}-\mathrm{c} \mathrm{C}-\mathrm{c}$. Agda asks for the name of the pattern variable to case on. Let's write x and press return. This replaces the previous clause with two new clauses, one where x has been replaced by zero and another where it has been replaced by suc x :

```
+-assoc-proof zero y z = { }0
+-assoc-proof (suc x) y z = { }1
```

Important: The x in the type signature of +-assoc-proof is not the same as the x pattern variable in the last clause where suc x is written. The following would also work: +-assoc-proof (suc $\left.x_{1}\right)$ y $z=\{ \} 1$. The scope of a variable declared in a signature is restricted to the signature itself.

Instead of one hole, we now have two. The first hole has type $y+z \equiv y+z$, which is easy to resolve. To do so, put the cursor inside the first hole labeled 0 and press $C-c \quad C-r$. This replaces the hole by the term refl, which stands for reflexivity and can be used any time we want to construct a term of type $\mathrm{w} \equiv \mathrm{w}$ for some term w .

```
+-assoc-proof zero y z = refl
+-assoc-proof (suc x) y z = { }1
```

Now we have one hole left to resolve. By putting the cursor in it and pressing $C-C \quad C-$, again, we get the type of the hole: suc $x+(y+z) \equiv$ suc $x+y+z$. Agda has already applied the definition of _+ to replace the left-hand side (suc $x+y)+z$ of the equation by suc $(x+y+z)$, and similarly replaced the right-hand side suc $x+(y+z)$ by suc $(x+(y+z))$.

Tip: You can use the go-to-definition command by selecting the definition that you want to check eg. _+_ and pressing $\mathrm{M}-$. in Emacs or $\mathrm{C}-\mathrm{M}-\backslash$ in Atom. This takes you to the definition of ${ }_{-}{ }_{-}$, which is originally defined in
the builtin module Agda. Builtin. Nat.

Tip: You can ask Agda to compute the normal form of a term. To do so, place the cursor in the remaining hole (which should not contain any text at this point) and press $C-c \quad C-n$. This prompts you for an expression to normalize. For example, if we enter (suc $x+y)+z$ we get back suc $(x+y+z)$ as a result.

Proof by induction

If we now look at the type of the remaining hole, we see that both the left-hand side and the right-hand side start with an application of the constructor suc. In this kind of situation it suffices to prove that the two arguments to suc are equal. This principle is called congruence of equality \equiv_{\ldots}, and it is expressed by the Agda function cong.

To use cong we need to apply it to a function or constructor, in this case suc. If we ask Agda to infer the type of cong suc by pressing $C-c C-d$ and entering the term, we get back the type $\{x y: \mathbb{N}\} \rightarrow x \equiv y \rightarrow$ suc $x \equiv$ suc y. In other words, cong suc takes as input a proof of an equality between x and y and produces a new proof of equality between suc x and suc y. We write cong suc in the hole and again press $C-c C-r$ to refine the hole. This results in the new line

```
+-assoc-proof (suc x) y z = cong suc { }2
```

where the new hole with number 2 is of type $x+(y+z) \equiv x+y+z$.
To finish the proof, we now make a recursive call +- assoc-proof $x y z$. Note that this has type $x+(y+$ $z) \equiv(x+y)+z$, which is exactly what we need. To complete the proof, we type + -assoc-proof x y z into the hole and solve it with $C-c \quad C-s p a c e$. This replaces the hole with the given term and completes the proof.

Note: When we define a recursive function like this, Agda performs termination checking on it. This is important to ensure the recursion is well-founded, and hence will not result in an invalid (circular) proof. In this case, the first argument x is structurally smaller than the first argument suc x on the left-hand side of the clause, hence Agda allows us to make the recursive call. Because termination is an undecidable property, Agda will not accept all terminating functions, but only the ones that are mechanically proved to terminate.

The final proof +- assoc-proof is defined as follows:

```
+-assoc-proof zero y z = refl
+-assoc-proof (suc x) y z = cong suc (+-assoc-proof x y z)
```

When we reload the file, we see *All Done*. This means that +-assoc-proof is indeed a proof of the statement + -assoc.

Here is the final code of the 'Hello world' proof example, with all imports together at the top of the file:

```
module hello-world-proof where
open import Data.Nat using (\mathbb{N}; zero; suc; _+_)
open import Relation.Binary.PropositionalEquality using (_三_; refl; cong)
+-assoc : Set
+-assoc = \forall(x y z : N ) ->x + (y + z) \equiv(x + y) + z
```



```
+-assoc-proof zero y z = refl
+-assoc-proof (suc x) y z = cong suc (+-assoc-proof x y z)
```

Tip: You can learn more details about proving in the chapter Proof by Induction of the online book Programming Language Foundations in Agda.

2.4.4 Building an Executable Agda Program

Agda is a dependently typed functional programming language. This means that we can write programs in Agda that interact with the world. In this section, we write a small 'Hello world' program in Agda, compile it, and execute it. In contrast to the standalone example on the Hello World page, here we make use of the standard library to write a shorter version of the same program.

Agda Source Code

First, we create a new file named hello-world-prog.agda with Emacs or Atom in a folder that we refer to as our top-level folder.

```
{-# OPTIONS --guardedness #-}
module hello-world-prog where
open import IO
main : Main
main = run (putStrLn "Hello, World!")
```

A quick line-by-line explanation:

- The first line is a pragma (a special comment) that specifies some options at the top of the file.
- The second line declares the top-level module, named hello-world-prog.
- The third line imports the IO module from the standard library and brings its contents into scope.
- A module exporting a function main of type Main (defined in the IO module of the standard library) can be compiled to a standalone executable. For example: main = run (putStrLn "Hello, World!") runs the IO command putStrLn "Hello, World!" and then quits the program.

Compilation with GHC Backend

Once we have loaded the program in Emacs or Atom, we can compile it directly by pressing $\mathrm{C}-\mathrm{C} \mathrm{C}-\mathrm{x} \quad \mathrm{C}-\mathrm{C}$ and entering GHC. Alternatively, we can open a terminal session, navigate to the top-level folder and run:

```
agda --compile hello-world-prog.agda
```

The --compile flag here creates via the GHC backend a binary file in the top-level folder that the computer can execute.

Finally, we can then run the executable (./hello-world-prog on Unix systems, hello-world-prog.exe on Windows) from the command line:

```
$ cd <your top-level folder>
$ ./hello-world-prog
Hello, World!
```


Compilation with JavaScript Backend

The JavaScript backend translates the Agda source code of the hello-world-prog. agda file to JavaScript code.
From Emacs or Atom, press $C-C \quad C-x \quad C-c$ and enter JS to compile the module to JavaScript. Alternatively, open a terminal session, navigate to the top-level folder and run:

```
agda --js hello-world-prog.agda
```

This creates several. js files in the top-level folder. The file corresponding to our source code has the name jAgda. hello-world-prog.js.

Hint: The additional --js-optimize flag can be used to make the generated JavaScript code faster but less readable. Moreover, the --js-minify flag makes the generated JavaScript code smaller and even less readable.

2.4.5 Where to go from here?

There are many books and tutorials on Agda. We recommend this list of tutorials.

Join the Agda Community!

Get in touch and join the Agda community, or join the conversation on the Agda Zulip.

2.5 A List of Tutorials

Note: Some of the materials linked on this page have been created for older versions of Agda and might no longer apply directly to the latest release.

2.5.1 Books on Agda

- Phil Wadler, Wen Kokke, and Jeremy G. Siek (2019). Programming Languages Foundations in Agda
- Aaron Stump (2016). Verified Functional Programming in Agda

2.5.2 Tutorials and lecture notes

- Jesper Cockx (2021). Programming and Proving in Agda. An introduction to Agda for a general audience of functional programmers. It starts from basic knowledge of Haskell and builds up to using equational reasoning to formally prove correctness of functional programs.
- Musa Al-hassy (2019). A slow-paced introduction to reflection in Agda.
- Jesper Cockx (2019). Formalize all the things (in Agda).
- Jan Malakhovski (2013). Brutal [Meta]Introduction to Dependent Types in Agda.
- Diviánszky Péter (2012). Agda Tutorial.
- Ana Bove, Peter Dybjer, and Ulf Norell (2009). A Brief Overview of Agda - A Functional Language with Dependent Types (in TPHOLs 2009) with an example of reflection. Code.
- Andreas Abel (2009). An Introduction to Dependent Types and Agda. Lecture notes used in teaching functional programming: basic introduction to Agda, Curry-Howard, equality, and verification of optimizations like fusion.
- Ulf Norell and James Chapman (2008). Dependently Typed Programming in Agda. This is aimed at functional programmers.
- Ana Bove and Peter Dybjer (2008). Dependent Types at Work. A gentle introduction including logic and proofs of programs.
- Anton Setzer (2008). Lecture notes on Interactive Theorem Proving. Swansea University. These lecture notes are based on Agda and contain an introduction of Agda for students with a very basic background in logic and functional programming.

2.5.3 Videos on Agda

- Conor McBride (2014). Introduction to Dependently Typed Programming using Agda. (videos of lectures). Associated source files, with exercises.
- Daniel Licata (2013). Dependently Typed Programming in Agda (at OPLSS 2013).
- Daniel Peebles (2011). Introduction to Agda. Video of talk from the January 2011 Boston Haskell session at MIT.

2.5.4 Courses using Agda

- Computer Aided Reasoning Material for a 3rd / 4th year course (g53cfr, g54 cfr) at the university of Nottingham 2010 by Thorsten Altenkirch
- Type Theory in Rosario Material for an Agda course in Rosario, Argentina in 2011 by Thorsten Altenkirch
- Software System Design and Implementation, undergrad(?) course at the University of New South Wales by Manuel Chakravarty.
- Tüübiteooria / Type Theory, graduate course at the University of Tartu by Varmo Vene and James Chapman.
- Advanced Topics in Programming Languages: Dependent Type Systems, course at the University of Pennsylvania by Stephanie Weirich.
- Categorical Logic, course at the University of Cambridge by Samuel Staton.
- Dependently typed functional languages, master level course at EAFIT University by Andrés Sicard-Ramírez.
- Introduction to Dependently Typed Programming using Agda, research level course at the University of Edinburgh by Conor McBride.
- Agda, introductory course for master students at ELTE Eötvös Collegium in Budapest by Péter Diviánszky and Ambrus Kaposi.
- Types for Programs and Proofs, course at Chalmers University of Technology.
- Advanced Functional Programming (in German), course at Ludwig-Maximilians-University Munich.
- Dependently typed metaprogramming (in Agda), Summer (2013) course at the University of Cambridge by Conor McBride.
- Computer-Checked Programs and Proofs (COMP 360-1), Dan Licata, Wesleyan, Fall 2013.
- Advanced Functional Programming Fall 2013 (CS410), Conor McBride, Strathclyde, notes from 2015, videos from 2017.
- Interactive Theorem proving (CS__336), Anton Setzer, Swansea University, Lent 2008.
- Inductive and inductive-recursive definitions in Intuitionistic Type Theory, lectures by Peter Dybjer at the Oregon Programming Languages Summer School 2015.
- Introduction to Univalent Foundations of Mathematics with Agda, MGS 2019 Martín Hötzel Escardó
- Higher-Dimensional Type Theory (CSCI 8980), courses on homotopy type theory and cubical type theory, Favonia, the University of Minnesota, Spring 2020
- Correct-by-construction Programming in Agda, a course at the EUTYPES Summer School '19 in Ohrid.
- Lectures on Agda, a course by Peter Selinger at Dalhousie University, Winter 2021.

2.5.5 Miscellaneous

- Agda has a Wikipedia page

chapter 3

Language Reference

3.1 Abstract definitions

Definitions can be marked as abstract, for the purpose of hiding implementation details, or to speed up type-checking of other parts. In essence, abstract definitions behave like postulates, thus, do not reduce/compute. For instance, proofs whose content does not matter could be marked abstract, to prevent Agda from unfolding them (which might slow down type-checking).
As a guiding principle, all the rules concerning abstract are designed to prevent the leaking of implementation details of abstract definitions. Similar concepts of other programming language include (non-representative sample): UCSD Pascal's and Java's interfaces and ML's signatures. (Especially when abstract definitions are used in combination with modules.)

3.1.1 Synopsis

- Declarations can be marked as abstract using the block keyword abstract.
- Outside of abstract blocks, abstract definitions do not reduce, they are treated as postulates, in particular:
- Abstract functions never match, thus, do not reduce.
- Abstract data types do not expose their constructors.
- Abstract record types do not expose their fields nor constructor.
- Other declarations cannot be abstract.
- Inside abstract blocks, abstract definitions reduce while type checking definitions, but not while checking their type signatures. Otherwise, due to dependent types, one could leak implementation details (e.g. expose reduction behavior by using propositional equality).
Consequently information from checking the body of a definition cannot leak into its type signature, effectively disabling type inference for abstract definitions. This means that all abstract definitions need a complete type signature.
- The reach of the abstract keyword block extends recursively to the where-blocks of a function and the declarations inside of a record declaration, but not inside modules declared in an abstract block.

3.1.2 Examples

Integers can be implemented in various ways, e.g. as difference of two natural numbers:

```
module Integer where
    abstract
```

```
Z : Set
```

Z : Set
Z = Nat }\times\mathrm{ Nat
Z = Nat }\times\mathrm{ Nat
O\mathbb{Z : \mathbb{Z}}\mathbf{}=0,
O\mathbb{Z : \mathbb{Z}}\mathbf{}=0,
O\mathbb{Z}=0,0
O\mathbb{Z}=0,0
1\mathbb{Z : \mathbb{Z}}\mathbf{}=0
1\mathbb{Z : \mathbb{Z}}\mathbf{}=0
1\mathbb{Z = 1, 0}
1\mathbb{Z = 1, 0}
+\mathbb{Z}
+\mathbb{Z}
(p , n) +\mathbb{Z}(\mp@subsup{p}{}{\prime},\mp@subsup{n}{}{\prime})=(p+\mp@subsup{p}{}{\prime}),(n+\mp@subsup{n}{}{\prime})
(p , n) +\mathbb{Z}(\mp@subsup{p}{}{\prime},\mp@subsup{n}{}{\prime})=(p+\mp@subsup{p}{}{\prime}),(n+\mp@subsup{n}{}{\prime})
-\mathbb{Z}_: \mathbb{Z}->\mathbb{Z}
-\mathbb{Z}_: \mathbb{Z}->\mathbb{Z}
-\mathbb{Z}(p,n)=(n, p)
-\mathbb{Z}(p,n)=(n, p)
\equiv\mathbb{Z}: (x y : \mathbb{Z) }
\equiv\mathbb{Z}: (x y : \mathbb{Z) }
(p , n) \equiv\mathbb{Z}(\mp@subsup{p}{}{\prime},\mp@subsup{n}{}{\prime})=(p+\mp@subsup{n}{}{\prime})\equiv(p'+n)
(p , n) \equiv\mathbb{Z}(\mp@subsup{p}{}{\prime},\mp@subsup{n}{}{\prime})=(p+\mp@subsup{n}{}{\prime})\equiv(p'+n)
private
private
postulate
postulate
+comm: }\forall\textrm{n}m->(\textrm{m}+\textrm{m})\equiv(\textrm{m}+\textrm{n}
+comm: }\forall\textrm{n}m->(\textrm{m}+\textrm{m})\equiv(\textrm{m}+\textrm{n}
inv\mathbb{Z : }\forall\textrm{x}->(\textrm{x}+\mathbb{Z}(-\mathbb{Z}x))\equiv\mathbb{Z}0\mathbb{Z}
inv\mathbb{Z : }\forall\textrm{x}->(\textrm{x}+\mathbb{Z}(-\mathbb{Z}x))\equiv\mathbb{Z}0\mathbb{Z}
inv\mathbb{Z (p , n) rewrite +comm (p + n) 0 | +comm p n = refl}

```
    inv\mathbb{Z (p , n) rewrite +comm (p + n) 0 | +comm p n = refl}
```

Using abstract we do not give away the actual representation of integers, nor the implementation of the operations. We can construct them from $0 \mathbb{Z}, 1 \mathbb{Z},{ }_{-}+\mathbb{Z}$, , and $-\mathbb{Z}$, but only reason about equality $\equiv \mathbb{Z}$ with the provided lemma invZ.

The following property shape-of $-0 \mathbb{Z}$ of the integer zero exposes the representation of integers as pairs. As such, it is rejected by Agda: when checking its type signature, $\mathrm{proj}_{1} \mathrm{x}$ fails to type check since x is of abstract type \mathbb{Z}. Remember that the abstract definition of \mathbb{Z} does not unfold in type signatures, even when in an abstract block! To work around this we have to define aliases for the projections functions:

```
-- A property about the representation of zero integers:
    abstract
    private
        posZ : \mathbb{Z }}
        posZ = proj1
        negZ : \mathbb{Z }}
        negZ = proj2
        shape-of-0\mathbb{Z : }\forall(x:\mathbb{Z})(is0\mathbb{Z}:x\equiv\mathbb{Z O\mathbb{Z})}->\mathrm{ posZ x 三 negZ x}
        shape-of-0\mathbb{Z (p , n) refl rewrite +comm p 0 = refl}
```

By requiring shape $-0 f-0 \mathbb{Z}$ to be private to type-check, leaking of representation details is prevented.

3.1.3 Scope of abstraction

In child modules, when checking an abstract definition, the abstract definitions of the parent module are transparent:

```
module M1 where
    abstract
        x : Nat
        x = 0
    module M2 where
        abstract
            x-is-0 : x \equiv 0
            x-is-0 = refl
```

Thus, child modules can see into the representation choices of their parent modules. However, parent modules cannot see like this into child modules, nor can sibling modules see through each others abstract definitions. An exception to this is anonymous modules, which share abstract scope with their parent module, allowing parent or sibling modules to see inside their abstract definitions.

The reach of the abstract keyword does not extend into modules:

```
module Parent where
    abstract
        module Child where
            y : Nat
            y = 0
        x : Nat
        x = 0 -- to avoid "useless abstract" error
    y-is-0 : Child.y \equiv 0
    y-is-0 = refl
```

The declarations in module Child are not abstract!

3.1.4 Abstract definitions with where-blocks

Definitions in a where block of an abstract definition are abstract as well. This means, they can see through the abstractions of their uncles:

```
module Where where
    abstract
        x : Nat
        x = 0
        y : Nat
        y = x
            where
            x\equivy : x \equiv 0
            x\equivy = refl
```


3.2 Built-ins

- Using the built-in types
- The unit type
- The Σ-type
- Lists
- Maybe
- Booleans
- Natural numbers
- Machine words
- Integers
- Floats
- Characters
- Strings
- Equality
- Sorts
- Universe levels
- Sized types
- Coinduction
- IO
- Literal overloading
- Reflection
- Rewriting
- Static values
- Strictness

The Agda type checker knows about, and has special treatment for, a number of different concepts. The most prominent is natural numbers, which has a special representation as Haskell integers and support for fast arithmetic. The surface syntax of these concepts are not fixed, however, so in order to use the special treatment of natural numbers (say) you define an appropriate data type and then bind that type to the natural number concept using a BUILTIN pragma.
Some built-in types support primitive functions that have no corresponding Agda definition. These functions are declared using the primitive keyword by giving their type signature.

3.2.1 Using the built-in types

While it is possible to define your own versions of the built-in types and bind them using BUILTIN pragmas, it is recommended to use the definitions in the Agda. Builtin modules. These modules are installed when you install Agda and so are always available. For instance, built-in natural numbers are defined in Agda.Builtin. Nat. The standard library and the agda-prelude reexport the definitions from these modules.

3.2.2 The unit type

```
module Agda.Builtin.Unit
```

The unit type is bound to the built-in UNIT as follows:

```
record T : Set where
{-# BUILTIN UNIT 丁 #-}
```

Agda needs to know about the unit type since some of the primitive operations in the reflected type checking monad return values in the unit type.

3.2.3 The Σ-type

module Agda.Builtin.Sigma
The built-in Σ-type of dependent pairs is defined as follows:

```
record \Sigma {a b} (A : Set a) (B : A -> Set b) : Set (a \sqcup b) where
    constructor _,_
    field
        fst : A
        snd : B fst
open \Sigma public
infixr 4 _'_
{-# BUILIIN SIGMA \Sigma#-}
```


3.2.4 Lists

```
module Agda.Builtin.List
```

Built-in lists are bound using the LIST built-in:

```
data List {a} (A : Set a) : Set a where
    [] : List A
    _:_ : (x : A) (xs : List A) -> List A
{-# BUILTIN LIST List #-}
infixr 5 _::_
```

The constructors are bound automatically when binding the type. Lists are not required to be level polymorphic; List : Set \rightarrow Set is also accepted.

As with booleans, the effect of binding the LIST built-in is to let you use primitive functions working with lists, such as primStringToList and primStringFromList, and letting the GHC backend know to compile the List type to Haskell lists.

3.2.5 Maybe

Built-in maybe type is bound using the MAYBE built-in:

```
data Maybe {a} (A : Set a) : Set a where
    nothing : Maybe A
    just : A }->\mathrm{ Maybe A
{-# BUILTIN MAYBE Maybe #-}
```

The constructors are bound automatically when binding the type. Maybe is not required to be level polymorphic; Maybe : Set \rightarrow Set is also accepted.
As with list, the effect of binding the MAYBE built-in is to let you use primitive functions working with maybes, such as primStringUncons that returns the head and tail of a string (if it is non empty), and letting the GHC backend know to compile the Maybe type to Haskell maybes.

3.2.6 Booleans

```
module Agda.Builtin.Bool where
```

Built-in booleans are bound using the BOOL, TRUE and FALSE built-ins:

```
data Bool : Set where
    false true : Bool
{-# BUILTIN BOOL BOOI #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
```

Note that unlike for natural numbers, you need to bind the constructors separately. The reason for this is that Agda cannot tell which constructor should correspond to true and which to false, since you are free to name them whatever you like.

The effect of binding the boolean type is that you can then use primitive functions returning booleans, such as built-in NATEQUALS, and letting the GHC backend know to compile the type to Haskell Bool.

3.2.7 Natural numbers

```
module Agda.Builtin.Nat
```

Built-in natural numbers are bound using the NATURAL built-in as follows:

```
data Nat : Set where
    zero : Nat
    suc : Nat }->\mathrm{ Nat
{-# BUILTIN NATURAL Nat #-}
```

The names of the data type and the constructors can be chosen freely, but the shape of the datatype needs to match the one given above (modulo the order of the constructors). Note that the constructors need not be bound explicitly.

Binding the built-in natural numbers as above has the following effects:

- The use of natural number literals is enabled. By default the type of a natural number literal will be Nat, but it can be overloaded to include other types as well.
- Closed natural numbers are represented as Haskell integers at compile-time.
- The compiler backends compile natural numbers to the appropriate number type in the target language.
- Enabled binding the built-in natural number functions described below.

Functions on natural numbers

There are a number of built-in functions on natural numbers. These are special in that they have both an Agda definition and a primitive implementation. The primitive implementation is used to evaluate applications to closed terms, and the Agda definition is used otherwise. This lets you prove things about the functions while still enjoying good performance of compile-time evaluation. The built-in functions are the following:

```
_+_ : Nat }->\mathrm{ Nat }->\mathrm{ Nat
zero + m = m
suc n +m= suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_-_ : Nat }->\mathrm{ Nat }->\mathrm{ Nat
n - zero = n
zero - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS ___ #-}
_*_ : Nat }->\mathrm{ Nat }->\mathrm{ Nat
zero * m = zero
suc n * m=(n * m) +m
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat }->\mathrm{ Nat }->\mathrm{ Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
{-# BUILTIN NATEQUALS _==_ #-}
_<_ : Nat }->\mathrm{ Nat }->\mathrm{ Bool
- < zero = false
zero < suc _ = true
suc n < suc m = n < m
{-# BUILTIN NATLESS _<_ #-}
div-helper : Nat }->\mathrm{ Nat }->\mathrm{ Nat }->\mathrm{ Nat }->\mathrm{ Nat
div-helper k m zero j = k
div-helper k m (suc n) zero = div-helper (suc k) m n m
div-helper k m (suc n) (suc j) = div-helper k m n j
{-# BUILTIN NATDIVSUCAUX div-helper #-}
mod-helper : Nat }->\mathrm{ Nat }->\mathrm{ Nat }->\mathrm{ Nat }->\mathrm{ Nat
mod-helper k m zero j = k
mod-helper k m (suc n) zero = mod-helper 0 m n m
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
{-# BUILTIN NATMODSUCAUX mod-helper #-}
```

The Agda definitions are checked to make sure that they really define the corresponding built-in function. The definitions are not required to be exactly those given above, for instance, addition and multiplication can be defined by recursion on either argument, and you can swap the arguments to the addition in the recursive case of multiplication.

The NATDIVSUCAUX and NATMODSUCAUX are built-ins bind helper functions for defining natural number division and modulo operations, and satisfy the properties

```
div n (suc m) \equiv div-helper 0 m n m
mod n (suc m) \equivmod-helper 0 m n m
```


3.2.8 Machine words

```
module Agda.Builtin.Word
module Agda.Builtin.Word.Properties
```

Agda supports built-in 64-bit machine words, bound with the WORD 64 built-in:

```
postulate Word64 : Set
{-# BUILTIN WORD64 Word64 #-}
```

Machine words can be converted to and from natural numbers using the following primitives:

```
primitive
    primWord64ToNat : Word64 -> Nat
    primWord64FromNat : Nat }->\mathrm{ Word64
```

Converting to a natural number is the trivial embedding, and converting from a natural number gives you the remainder modulo 2^{64}. The proof of the former theorem:

```
primitive
    primWord64ToNatInjective : }\forall\textrm{a
```

is in the Properties module. The proof of the latter theorem is not primitive, but can be defined in a library using primTrustMe.

Basic arithmetic operations can be defined on Word64 by converting to natural numbers, performing the corresponding operation, and then converting back. The compiler will optimise these to use 64-bit arithmetic. For instance:

```
addWord : Word64 -> Word64 -> Word64
addWord a b = primWord64FromNat (primWord64ToNat a + primWord64ToNat b)
subWord : Word64 -> Word64 -> Word64
subWord a b = primWord64FromNat ((primWord64ToNat a + 18446744073709551616) --
\hookrightarrowprimWord64ToNat b)
```

These compile to primitive addition and subtraction on 64-bit words, which in the GHC backend map to operations on Haskell 64-bit words (Data.Word.Word64).

3.2.9 Integers

```
module Agda.Builtin.Int
```

Built-in integers are bound with the INTEGER built-in to a data type with two constructors: one for positive and one for negative numbers. The built-ins for the constructors are INTEGERPOS and INTEGERNEGSUC.

```
data Int : Set where
    pos : Nat }->\mathrm{ Int
    negsuc : Nat }->\mathrm{ Int
{-# BUILTIN INTEGER Int #-}
{-# BUILTIN INTEGERPOS pos #-}
{-# BUILIIN INTEGERNEGSUC negsuc #-}
```

Here negsuc n represents the integer $-n-1$. Unlike for natural numbers, there is no special representation of integers at compile-time since the overhead of using the data type compared to Haskell integers is not that big.
Built-in integers support the following primitive operation (given a suitable binding for String):

```
primitive
    primShowInteger : Int }->\mathrm{ String
```


3.2.10 Floats

```
module Agda.Builtin.Float
module Agda.Builtin.Float.Properties
```

Floating point numbers are bound with the FLOAT built-in:

```
postulate Float : Set
{-# BUILTIN FLOAT Float #-}
```

This lets you use floating point literals. Floats are represented by the type checker as IEEE 754 binary 64 double precision floats, with the restriction that there is exactly one NaN value. The following primitive functions are available (with suitable bindings for Nat, Bool, String, Int, Maybe_):

```
primitive
    -- Relations
    primFloatIsInfinite : Float }->\mathrm{ Bool
    primFloatIsNaN : Float }->\mathrm{ Bool
    primFloatIsNegativeZero : Float }->\mathrm{ Bool
    -- Conversions
    primNatToFloat : Nat }->\mathrm{ Float
    primIntToFloat : Int }->\mathrm{ Float
    primFloatToRatio : Float }->\mathrm{ ( }\Sigma\mathrm{ Int }\mp@subsup{\lambda}{~}{}->\mathrm{ Int)
    primRatioToFloat : Int }->\mathrm{ Int }->\mathrm{ Float
    primShowFloat : Float }->\mathrm{ String
    -- Operations
    primFloatPlus : Float }->\mathrm{ Float }->\mathrm{ Float
    primFloatMinus : Float }->\mathrm{ Float }->\mathrm{ Float
    primFloatTimes : Float }->\mathrm{ Float }->\mathrm{ Float
    primFloatDiv : Float }->\mathrm{ Float }->\mathrm{ Float
    primFloatPow : Float }->\mathrm{ Float }->\mathrm{ Float
    primFloatNegate : Float }->\mathrm{ Float
    primFloatSqrt : Float }->\mathrm{ Float
    primFloatExp : Float }->\mathrm{ Float
    primFloatLog : Float }->\mathrm{ Float
    primFloatSin : Float }->\mathrm{ Float
    primFloatCos : Float }->\mathrm{ Float
    primFloatTan : Float }->\mathrm{ Float
    primFloatASin : Float }->\mathrm{ Float
    primFloatACos : Float }->\mathrm{ Float
    primFloatATan : Float }->\mathrm{ Float
    primFloatATan2 : Float }->\mathrm{ Float }->\mathrm{ Float
    primFloatSinh : Float }->\mathrm{ Float
    primFloatCosh : Float }->\mathrm{ Float
    primFloatTanh : Float }->\mathrm{ Float
    primFloatASinh : Float }->\mathrm{ Float
```

(continues on next page)

```
primFloatACosh : Float }->\mathrm{ Float
primFloatATanh : Float }->\mathrm{ Float
```

The primitive binary relations implement their IEEE 754 equivalents, which means that primFloat Equality is not reflexive, and primFloat Inequality and primFloatLess are not total. (Specifically, NaN is not related to anything, including itself.)

The primFloatIsSafeInteger function determines whether the value is a number that is a safe integer, i.e., is within the range where the arithmetic operations do not lose precision.

Floating point numbers can be converted to their raw representation using the primitive:

```
primitive
    primFloatToWord64 : Float }->\mathrm{ Word64
```

which normalises all NaN to a canonical NaN with an injectivity proof:

```
primFloatToWord64Injective : }\forall\textrm{a b }->\mathrm{ primFloatToWord64 a 三 primFloatToWord64 b }->\mathrm{ b a
```

$\hookrightarrow \equiv \mathrm{b}$
in the Properties module. These primitives can be used to define a safe decidable propositional equality with the --safe option. The function primFloatToWord64 cannot be guaranteed to be consistent across backends, therefore relying on the specific result may result in inconsistencies.
The rounding operations (primFloatRound, primFloatFloor, and primFloatCeiling) return a value of type Maybe Int, and return nothing when applied to NaN or the infinities:

```
primitive
    primFloatRound : Float }->\mathrm{ Maybe Int
    primFloatFloor : Float }->\mathrm{ Maybe Int
    primFloatCeiling : Float }->\mathrm{ Maybe Int
```

The primFloatDecode function decodes a floating-point number to its mantissa and exponent, normalised such that the mantissa is the smallest possible integer. It fails when applied to NaN or the infinities, returning nothing. The primFloatEncode function encodes a pair of a mantissa and exponent to a floating-point number. It fails when the resulting number cannot be represented as a float. Note that primFloatEncode may result in a loss of precision.
primitive primFloatDecode : Float \rightarrow Maybe (Σ Int $\lambda_{-} \rightarrow$ Int) primFloatEncode : Int \rightarrow Int \rightarrow Maybe Float

3.2.11 Characters

```
module Agda.Builtin.Char
module Agda.Builtin.Char.Properties
```

The character type is bound with the CHARACTER built-in:

```
postulate Char : Set
{-# BUILIIN CHAR Char #-}
```

Binding the character type lets you use character literals. The following primitive functions are available on characters (given suitable bindings for Bool, Nat and String):

```
primitive
    primIsLower : Char }->\mathrm{ Bool
    primIsDigit : Char }->\mathrm{ Bool
    primIsAlpha : Char }->\mathrm{ Bool
    primIsSpace : Char }->\mathrm{ Bool
    primIsAscii : Char }->\mathrm{ Bool
    primIsLatin1 : Char }->\mathrm{ Bool
    primIsPrint : Char }->\mathrm{ Bool
    primIsHexDigit : Char }->\mathrm{ Bool
    primToUpper : Char }->\mathrm{ Char
    primToLower : Char }->\mathrm{ Char
    primCharToNat : Char }->\mathrm{ Nat
    primNatToChar : Nat }->\mathrm{ Char
    primShowChar : Char }->\mathrm{ String
```

These functions are implemented by the corresponding Haskell functions from Data.Char (ord and chr for primCharToNat and primNatToChar). To make primNatToChar total chr is applied to the natural number modulo 0×110000. Furthermore, to match the behaviour of strings, surrogate code points are mapped to the replacement character U+FFFD.

Converting to a natural number is the obvious embedding, and its proof:

```
primitive
    primCharToNatInjective : }\forall\textrm{a b}->\mathrm{ primCharToNat a p primCharToNat b }->\textrm{a}\equiv\textrm{b
```

can be found in the Properties module.

3.2.12 Strings

```
module Agda.Builtin.String
module Agda.Builtin.String.Properties
```

The string type is bound with the STRING built-in:

```
postulate String : Set
{-# BUILTIN STRING String #-}
```

Binding the string type lets you use string literals. The following primitive functions are available on strings (given suitable bindings for Bool, Char and List):

```
primitive
    primStringUncons : String }->\mathrm{ Maybe ( }\Sigma\operatorname{Char ( }\lambda
    primStringToList : String }->\mathrm{ List Char
    primStringFromList : List Char }->\mathrm{ String
    primStringAppend : String }->\mathrm{ String }->\mathrm{ String
    primStringEquality : String }->\mathrm{ String }->\mathrm{ Bool
    primShowString : String }->\mathrm{ String
```

String literals can be overloaded.
Converting to and from a list is injective, and their proofs:

```
primitive
    primStringToListInjective : }\forall\textrm{a}|>>\mp@code{primStringToList a 三 primStringToList b }->\textrm{b}=
@
    primStringFromListInjective : \forall a b m primStringFromList a \equiv primStringFromList b
```

can found in the Properties module．
Strings cannot represent unicode surrogate code points（characters in the range $\mathrm{U}+\mathrm{D} 800$ to $\mathrm{U}+\mathrm{DFFF}$ ）．These are replaced by the unicode replacement character $U+$ FFFD if they appear in string literals．

3．2．13 Equality

```
module Agda.Builtin.Equality
```

The identity type can be bound to the built－in EQUALITY as follows

```
infix 4 _ 三_
data _三_ {a} {A : Set a} (x : A) : A }->\mathrm{ Set a where
    refl : x \equiv x
{-# BUILTIN EQUALITY _ 三_ #-}
```

This lets you use proofs of type lhs \equiv rhs in the rewrite construction．
Other variants of the identity type are also accepted as built－in：

```
data_\equiv_ {A : Set} : (x y : A) }->\mathrm{ Set where
    refl : (x : A) }->\textrm{x}\equiv\textrm{x
```

The type of primEraseEquality has to match the flavor of identity type．

```
module Agda.Builtin.Equality.Erase
```

Binding the built－in equality type also enables the primEraseEquality primitive：

```
primitive
    primEraseEquality : }\forall{a} {A: Set a} {x y : A} -> x = y m x = y
```

The function takes a proof of an equality between two values x and y and stays stuck on it until x and y actually become definitionally equal．Whenever that is the case，primEraseEquality e reduces to refl．

One use of primEraseEquality is to replace an equality proof computed using an expensive function（e．g．a proof by reflection）by one which is trivially refl on the diagonal．

primTrustMe

```
module Agda.Builtin.TrustMe
```

From the primEraseEquality primitive，we can derive a notion of primTrustMe：

```
primTrustMe : }\forall{\mp@code{a} {A : Set a} {x y : A} }->\textrm{x}\equiv\textrm{X
primTrustMe {x = x} {y} = primEraseEquality unsafePrimTrustMe
    where postulate unsafePrimTrustMe : x \equiv y
```

As can be seen from the type，primTrustMe must be used with the utmost care to avoid inconsistencies．What makes it different from a postulate is that if x and y are actually definitionally equal，primTrustMe reduces to refl．One use of primTrustMe is to lift the primitive boolean equality on built－in types like String to something that returns a proof object：

```
eqString : (a b : String) }->\mathrm{ Maybe (a 三 b)
eqString a b = if primStringEquality a b
    then just primTrustMe
    else nothing
```

With this definition eqString "foo" "foo" computes to just refl.

3.2.14 Sorts

The primitive sorts used in Agda's type system (Set, Prop, and Set ω) are declared using BUILTIN pragmas in the Agda. Primitive module. These pragmas should not be used directly in other modules, but it is possible to rename these builtin sorts when importing Agda. Primitive.

```
{-# BUILTIN TYPE Set #-}
{-# BUILTIN PROP PrOp #-}
{-# BUILTIN SETOMEGA Set\omega #-}
```

The primitive sorts Set and Prop are automatically imported at the top of every top-level Agda module, unless the --no-import-sorts flag is enabled.

3.2.15 Universe levels

```
module Agda.Primitive
```

Universe levels are also declared using BUILTIN pragmas. In contrast to the Agda. Builtin modules, the Agda. Primitive module is auto-imported and thus it is not possible to change the level built-ins. For reference these are the bindings:

```
postulate
    Level : Set
    lzero : Level
    lsuc : Level }->\mathrm{ Level
    _\sqcup_ : Level }->\mathrm{ Level }->\mathrm{ Level
{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO Izero #-}
{-# BUILTIN LEVELSUC ISuc #-}
{-# BUILTIN LEVELMAX _\sqcup_ #-}
```


3.2.16 Sized types

```
module Agda.Builtin.Size
```

The built-ins for sized types are different from other built-ins in that the names are defined by the BUILTIN pragma. Hence, to bind the size primitives it is enough to write:

```
{-# BUILTIN SIZEUNIV SizeUniv #-} -- SizeUniv : SizeUniv
{-# BUILTIN SIZE Size #-} -- Size : SizeUniv
{-# BUILTIN SIZELT Size<_ #-} -- Size<_ : ..Size -> SizeUniv
{-# BUILTIN SIZESUC \uparrow_ #-} -- {_ : Size -> Size
{-# BUILTIN SIZEINF \infty #-} -- \infty : Size
{-# BUILTIN SIZEMAX - ப '_ #-} -- _- \
```


3.2.17 Coinduction

```
module Agda.Builtin.Coinduction
```

The following built-ins are used for coinductive definitions:

```
postulate
    \infty: }\forall\mathrm{ {a} (A : Set a) }->\mathrm{ Set a
    #_ : }\forall{\mp@code{a} {A : Set a} }->\textrm{A}->\infty->
    b:}:\forall{a} {A: Set a} ->\infty A -> A
{-# BUILTIN INFINITY \infty #-}
{-# BUILTIN SHARP #- #-}
{-# BUILTIN FLAT b #-}
```

See Coinduction for more information.

3.2.18 10

```
module Agda.Builtin.IO
```

The sole purpose of binding the built-in IO type is to let Agda check that the main function has the right type (see Compilers).

```
postulate IO : Set }->\mathrm{ Set
{-# BUILTIN IO IO #-}
```


3.2.19 Literal overloading

```
module Agda.Builtin.FromNat
module Agda.Builtin.FromNeg
module Agda.Builtin.FromString
```

The machinery for overloading literals uses built-ins for the conversion functions.

3.2.20 Reflection

```
module Agda.Builtin.Reflection
```

The reflection machinery has built-in types for representing Agda programs. See Reflection for a detailed description.

3.2.21 Rewriting

The experimental and totally unsafe rewriting machinery (not to be confused with the rewrite construct) has a built-in REWRITE for the rewriting relation:

```
postulate_\mapsto_ : \forall {a} {A : Set a} }->\textrm{A}->\textrm{A}->\textrm{A}->\mathrm{ Set a
{-# BUILTIN REWRITE_\mapsto_ #-}
```

This builtin is bound to the builtin equality type from Agda.Builtin.Equality in Agda. Builtin. Equality.Rewrite.

3.2.22 Static values

The STATIC pragma can be used to mark definitions which should be normalised before compilation. The typical use case for this is to mark the interpreter of an embedded language as STATIC:

```
{-# STATIC <Name> #-}
```


3.2.23 Strictness

```
module Agda.Builtin.Strict
```

There are two primitives for controlling evaluation order:

```
primitive
```



```
    ->primForce x f 三 f x
```

where _ \equiv _ is the built-in equality. At compile-time primForce $x f$ evaluates to $f x$ when x is in weak head normal form (whnf), i.e. one of the following:

- a constructor application
- a literal
- a lambda abstraction
- a type constructor application (data or record type)
- a function type
- a universe (Set _)

Similarly primForceLemma x , which lets you reason about programs using primForce, evaluates to refl when x is in whnf. At run-time, primForce $e f$ is compiled (by the GHC backend) to let $x=e$ in seq x (f x).

For example, consider the following function:

```
-- pow' n a = a 2 n
pow' : Nat }->\mathrm{ Nat }->\mathrm{ Nat
pow' zero a = a
pow' (suc n) a = pow' n (a + a)
```

There is a space leak here (both for compile-time and run-time evaluation), caused by unevaluated a +a thunks. This problem can be fixed with primForce:

```
infixr 0 _$!_
```



```
f $! x = primForce x f
-- pow n a = a 2 }\mp@subsup{}{}{n
pow : Nat }->\mathrm{ Nat }->\mathrm{ Nat
pow zero a = a
pow (suc n) a = pow n $! a + a
```


3.3 Coinduction

The corecursive definitions below are accepted if the option --guardedness is active:

```
{-# OPTIONS --guardedness #-}
```

(An alternative approach is to use Sized Types.)

3.3.1 Coinductive Records

It is possible to define the type of infinite lists (or streams) of elements of some type A as follows:

```
record Stream (A : Set) : Set where
    coinductive
    field
        hd : A
        tl : Stream A
```

As opposed to inductive record types, we have to introduce the keyword coinductive before defining the fields that constitute the record.

It is interesting to note that it is not necessary to give an explicit constructor to the record type Stream.
We can also define pointwise equality (a bisimulation and an equivalence) of a pair of Streams as a coinductive record:

```
record _~_ {A} (xs : Stream A) (ys : Stream A) : Set where
    coinductive
    field
        hd-\equiv : hd xs \equiv hd ys
        tl-\approx : tl xs \approx tl ys
```

Using copatterns we can define a pair of functions on St reams such that one returns the elements in the even positions and the other the elements in the odd positions:

```
even : }\forall{A}->\mathrm{ Stream A }->\mathrm{ Stream A
hd (even xs) = hd xs
tl (even xs) = even (tl (tl xs))
odd : }\forall{A}->\mathrm{ Stream A }->\mathrm{ Stream A
odd xs = even (tl xs)
split : }\forall{A}->\mathrm{ Stream A }->\mathrm{ Stream A }\times\mathrm{ Stream A
split xs = even xs , odd xs
```

as well as a function that merges a pair of Streams by interleaving their elements:

```
merge : }\forall{A}->\mathrm{ Stream A }\times\mathrm{ Stream A }->\mathrm{ Stream A
hd (merge (xs , ys)) = hd xs
tl (merge (xs , ys)) = merge (ys , tl xs)
```

Finally, we can prove that merge is a left inverse for split:

```
merge-split-id : }\forall\mathrm{ {A} (xs : Stream A) }->\mathrm{ merge (split xs) }\approx x
hd-\equiv (merge-split-id _) = refl
tl-\approx (merge-split-id xs) = merge-split-id (tl xs)
```


3.3.2 Old Coinduction

Note: This is the old way of coinduction support in Agda. You are advised to use Coinductive Records instead.

To use coinduction it is recommended that you import the module Coinduction from the standard library. Coinductive types can then be defined by labelling coinductive occurrences using the delay operator ∞ :

```
data CoN : Set where
    zero : Co\mathbb{N}
    suc : \infty CoN}->\textrm{CoN
```

The type ∞ A can be seen as a suspended computation of type A. It comes with delay and force functions:

```
#_: }\forall\mathrm{ {a} {A : Set a} }->\textrm{A}->\textrm{A}->\infty
b: : {a} {A : Set a} }->\infty,\inftyA->
```

Values of coinductive types can be constructed using corecursion, which does not need to terminate, but has to be productive. As an approximation to productivity the termination checker requires that corecursive definitions are guarded by coinductive constructors. As an example the infinite "natural number" can be defined as follows:

```
inf : CoN
inf = suc (# inf)
```

The check for guarded corecursion is integrated with the check for size-change termination, thus allowing interesting combinations of inductive and coinductive types. We can for instance define the type of stream processors, along with some functions:

```
-- Infinite streams.
data Stream (A : Set) : Set where
    _:__ : (x : A) (xs : \infty (Stream A)) }->\mathrm{ Stream A
-- A stream processor SP A B consumes elements of A and produces
-- elements of B. It can only consume a finite number of A's before
-- producing a B.
data SP (A B : Set) : Set where
    get:(f:A A SP A B) }->\mathrm{ (SP A B
    put:(b : B) (Sp : \infty (SP A B)) ->SP A B
-- The function eat is defined by an outer corecursion into Stream B
-- and an inner recursion on SP A B.
eat: }\forall{{AB}->SPABB Stream A -> Stream B
eat (get f) (a :: as) = eat (f a) (b as)
eat (put b sp) as = b :: # eat (b sp) as
-- Composition of stream processors.
```



```
put x sp, o spp = put x (# (b spp1 ○ sp 2))
sp1 
```

It is also possible to define "coinductive families". It is recommended not to use the delay constructor ($\sharp _$) in a
constructor's index expressions. The following definition of equality between coinductive "natural numbers" is discouraged:

```
data _ *'_ : CoN }->\mathrm{ CoNN }->\mathrm{ Set where
    zero : zero *' zero
    suc : }\forall{mn}->\infty(m\mp@subsup{\approx}{}{\prime}n)->\operatorname{suc}(\sharpm)\mp@subsup{\approx}{}{\prime}\operatorname{suc}(\sharpn
```

The recommended definition is the following one:

```
data _\approx_ : CoN }->\mathrm{ CoNN }->\mathrm{ Set where
    zero : zero \approx zero
    suc : }\forall{m\textrm{n}}->\infty(bm\approxbn)->\mathrm{ suc m}\approx\mathrm{ suc n
```


3.4 Copatterns

Consider the following record:

```
record Enumeration (A : Set) : Set where
    constructor enumeration
    field
        start : A
        forward : A }->\textrm{A
        backward : A }->\mathrm{ A
```

This gives an interface that allows us to move along the elements of a data type A.
For example, we can get the "third" element of a type A:

```
open Enumeration
3rd : {A : Set} }->\mathrm{ Enumeration A }->\mathrm{ A
3rd e = forward e (forward e (forward e (start e)))
```

Or we can go back 2 positions starting from a given a:

```
backward-2 : {A : Set} }->\mathrm{ Enumeration A }->\mathrm{ A }->\mathrm{ A
backward-2 e a = backward (backward a)
    where
        open Enumeration e
```

Now, we want to use these methods on natural numbers. For this, we need a record of type Enumeration Nat. Without copatterns, we would specify all the fields in a single expression:

```
open Enumeration
enum-Nat : Enumeration Nat
enum-Nat = record {
    start = 0
    ; forward = suc
    ; backward = pred
    }
    where
        pred : Nat }->\mathrm{ Nat
        pred zero = zero
        pred (suc x) = x
```

```
\mp@subsup{test }{1}{}:3rd enum-Nat \equiv3
test 
test2 : backward-2 enum-Nat 5 三 3
test2 = refl
```

Note that if we want to use automated case-splitting and pattern matching to implement one of the fields, we need to do so in a separate definition.

With copatterns, we can define the fields of a record as separate declarations, in the same way that we would give different cases for a function:

```
open Enumeration
enum-Nat : Enumeration Nat
start enum-Nat = 0
forward enum-Nat n = suc n
backward enum-Nat zero = zero
backward enum-Nat (suc n) = n
```

The resulting behaviour is the same in both cases:

```
\mp@subsup{test }{1}{}:3rd enum-Nat \equiv3
\mp@subsup{test }{1}{\prime}= refl
test2 : backward-2 enum-Nat 5 三 3
\mp@subsup{test}{2}{\prime}= refl
```


3.4.1 Copatterns in function definitions

In fact, we do not need to start at 0 . We can allow the user to specify the starting element.
Without copatterns, we just add the extra argument to the function declaration:

```
open Enumeration
enum-Nat : Nat }->\mathrm{ Enumeration Nat
enum-Nat initial = record {
    start = initial
    ; forward = suc
    ; backward = pred
    }
    where
        pred : Nat }->\mathrm{ Nat
        pred zero = zero
        pred (suc x) = x
test 1 : 3rd (enum-Nat 10) \equiv13
\mp@subsup{test}{1}{}= refl
```

With copatterns, the function argument must be repeated once for each field in the record:

```
open Enumeration
```

```
enum-Nat : Nat }->\mathrm{ Enumeration Nat
start (enum-Nat initial) = initial
forward (enum-Nat _) n = suc n
backward (enum-Nat _) zero = zero
backward (enum-Nat _) (suc n) = n
```


3.4.2 Mixing patterns and co-patterns

Instead of allowing an arbitrary value, we want to limit the user to two choices: 0 or 42 .
Without copatterns, we would need an auxiliary definition to choose which value to start with based on the userprovided flag:

```
open Enumeration
if_then_else__: {A : Set } }->\mathrm{ Bool }->\textrm{A}->\textrm{A}->\textrm{A
if true then x else _ = x
if false then _ else y = y
enum-Nat : Bool }->\mathrm{ Enumeration Nat
enum-Nat ahead = record
    start = if ahead then 42 else 0
    ; forward = suc
    ; backward = pred
    }
    where
    pred : Nat }->\mathrm{ Nat
    pred zero = zero
    pred (suc x) = x
```

With copatterns, we can do the case analysis directly by pattern matching:

```
open Enumeration
enum-Nat : Bool }->\mathrm{ Enumeration Nat
start (enum-Nat true) = 42
start (enum-Nat false) = 0
forward (enum-Nat _) n = suc n
backward (enum-Nat _) zero = zero
backward (enum-Nat__) (suc n) = n
```

Tip: When using copatterns to define an element of a record type, the fields of the record must be in scope. In the examples above, we use open Enumeration to bring the fields of the record into scope.

Consider the first example:

```
enum-Nat : Enumeration Nat
start enum-Nat = 0
forward enum-Nat n = suc n
backward enum-Nat zero = zero
backward enum-Nat (suc n) = n
```

If the fields of the Enumeration record are not in scope (in particular, the start field), then Agda will not be able to figure out what the first copattern means:

```
Could not parse the left-hand side start enum-Nat
Operators used in the grammar:
None
when scope checking the left-hand side start enum-Nat in the
definition of enum-Nat
```

The solution is to open the record before using its fields:

```
open Enumeration
enum-Nat : Enumeration Nat
start enum-Nat = 0
forward enum-Nat n = suc n
backward enum-Nat zero = zero
backward enum-Nat (suc n) = n
```


3.5 Core language

A program in Agda consists of a number of declarations written in an *. agda file. A declaration introduces a new identifier and gives its type and definition. It is possible to declare:

- datatypes
- record types (including coinductive records)
- function definitions (including mixfix operators and abstract definitions)
- modules
- local definitions let and where
- postulates
- variables
- pattern-synonyms
- precedence (fixity)
- pragmas, and
- program options

Declarations have a signature part and a definition part. These can appear separately in the program. Names must be declared before they are used, but by separating the signature from the definition it is possible to define things in mutual recursion.

3.5.1 Grammar

At its core, Agda is a dependently typed lambda calculus. The grammar of terms where a represents a generic term is:

```
a ::= x -- variable
    | \lambda x }->\mathrm{ a -- lambda abstraction
    | -- defined function
    | (x : a) -> a -- function space
    | F -- data/record type
```

```
| c a
-- data/record constructor
| s -- sort Seti, Set\omega+i
```


3.5.2 Syntax overview

The syntax of an Agda program is defined in terms of three key components:

- Expressions write function bodies and types.
- Declarations declare types, data-types, postulates, records, functions etc.
- Pragmas define program options.

There are also three main levels of syntax, corresponding to different levels of interpretation:

- Concrete is the high-level sugared syntax, it representing exactly what the user wrote (Agda.Syntax.Concrete).
- Abstract, before typechecking (Agda.Syntax.Abstract)
- Internal, the full-intepreted core Agda terms, typechecked; roughly corresponding to (Agda.Syntax.Internal).

The process of translating an *. agda file into an executable has several stages:

```
*.agda file
    ==[ parser (Lexer.x + Parser.y) ]==>
Concrete syntax
    ==[ nicifier (Syntax.Concrete.Definitions) ]==>
'Nice' concrete syntax
    ==[ scope checking (Syntax.Translation.ConcreteToAbstract) ]==>
Abstract syntax
    ==[ type checking (TypeChecking.Rules.*) ]==>
Internal syntax
    ==[ Agda.Compiler.ToTreeless ]==>
Treeless syntax
    ==[ different backends (Compiler.MAlonzo.*, Compiler.JS.*, ...) ]==>
Source code
    ==[ different compilers (GHC compiler, ...) ]==>
Executable
```

The following sections describe these stages in more detail:

3.5.3 Lexer

Lexical analysis (aka tokenization) is the process of converting a sequence of characters (the raw \star. agda file) into a sequence of tokens (strings with a meaning).

The lexer in Agda is generated by Alex, and is an adaptation of GHC's lexer. The main lexing function lexer is called by the Agda. Syntax. Parser. Parser to get the next token from the input.

3.5.4 Parser

The parser is the component that takes the output of the lexer and builds a data structure that we will call Concrete Syntax, while checking for correct syntax.

The parser is generated by Happy.

Example: when a name is a sequence of parts, the lexer just sees it as a string, the parser does the translation in this step.

3.5.5 Concrete Syntax

The concrete syntax is a raw representation of the program text without any desugaring at all. This is what the parser produces. The idea is that if we figure out how to keep the concrete syntax around, it can be printed exactly as the user wrote it.

3.5.6 Nice Concrete Syntax

The Nice Concrete Syntax is a slightly reorganized version of the Concrete Syntax that is easier to deal with internally. Among other things, it:

- detects mutual blocks
- assembles definitions from their isolated parts
- collects fixity information of mixfix operators and attaches it to definitions
- emits warnings for possibly unintended but still valid declarations, which essentially is dead code such as empty instance blocks and misplaced pragmas

3.5.7 Abstract Syntax

The translation from Agda. Syntax. Concrete to Agda. Syntax. Abstract involves scope analysis, figuring out infix operator precedences and tidying up definitions.

The abstract syntax Agda. Syntax. Abstract is the result after desugaring and scope analysis of the concrete syntax. The type checker works on abstract syntax, producing internal syntax.

3.5.8 Internal Syntax

This is the final stage of syntax before being handed off to one of the backends. Terms are well-scoped and well-typed.
While producing the Internal Syntax, terms are checked for safety. This safety check means termination check and coverage check for functions, and positivity check for datatypes.
Type-directed operations such as instance resolution and disambiguation of overloaded constructors (different constructors with the same name) also happen here.

The internal syntax Agda. Syntax. Internal uses the following haskell datatype to represent the grammar of a Term presented above.

```
data Term = Var {-# UNPACK #-} !Int Elims -- ^@x es@ neutral
    Lam ArgInfo (Abs Term) -- ^ Terms are beta normal. Relevance is -
@ignored
    | Lit Literal
    | Def QName Elims -- ^ @f es@, possibly a delta/iota-redex
    | Con ConHead ConInfo Elims
    -- ^ @c es@ or @record { fs = es }@
    -- @es@ allows only Apply and IApply eliminations,
    -- and IApply only for data constructors.
    | Pi (Dom Type) (Abs Type) -- ^ dependent or non-dependent function space
    Sort Sort
```

(continues on next page)

```
MetaV {-# UNPACK #-} !MetaId Elims
```


3.5.9 Treeless Syntax

The treeless syntax is intended to be used as input for the compiler backends. It is more low-level than the internal syntax and is not used for type checking. Some of the features of the treeless syntax are:

- case expressions instead of case trees
- no instantiated datatypes / constructors

For instance, the Glasgow Haskell Compiler (GHC) backend translates the treeless syntax into a proper GHC Haskell program.
Another backend that may be used is the JavaScript backend, which translates the treeless syntax to JavaScript code.
The treeless representation of the program has A-normal form (ANF). That means that all the case expressions are targeting a single variable, and all alternatives may only peel off one constructor.

The backends can handle an ANF syntax easier than a syntax of a language where one may case arbitrary expressions and use deep patterns.

3.6 Coverage Checking

To ensure completeness of definitions by pattern matching, Agda performs a coverage check on each definition by pattern matching. This page explains how this coverage check works by starting from simple examples and building up to the general case.

3.6.1 Single match on a non-indexed datatype

When a function definition pattern matches on a single argument of a simple (i.e. non-indexed) datatype, there should be a clause for each constructor. For example:

```
data TrafficLight : Set where
    red yellow green : TrafficLight
go : TrafficLight }->\mathrm{ Bool
go red = false
go yellow = false
go green = true
```

Alternatively, one or more cases may be replaced by a catchall clause that uses a variable pattern or a wildcard pattern _. In this case, the catchall clause should be last.

```
go' : TrafficLight }->\mathrm{ Bool
go' green = true
go' - = false
```

[^0]The coverage check can be turned off for an individual definition by putting a \{-\# NON_COVERING \#-\} pragma immediately in front of the type signature.

```
{-# NON_COVERING #-}
go'' : TrafficLight }->\mathrm{ Bool
go'' red = false
go'' green = true
```

In the special case of a datatype with no constructors (i.e. an empty type), there should be a single absurd clause with an absurd pattern () and no right-hand side.

```
data }\perp\mathrm{ : Set where
    -- no constructors
magic : {A : Set} }->\perp->
magic ()
```


3.6.2 Matching on multiple arguments

If a function matches on several arguments, there should be a case for each possible combinations of constructors.

```
sameColor : TrafficLight }->\mathrm{ TrafficLight }->\mathrm{ Bool
sameColor red red = true
sameColor red yellow = false
sameColor red green = false
sameColor yellow red = false
sameColor yellow yellow = true
sameColor yellow green = false
sameColor green red = false
sameColor green yellow = false
sameColor green green = true
```

Again, one or more cases may be replaced by a catchall clause.

```
sameColor' : TrafficLight }->\mathrm{ TrafficLight }->\mathrm{ Bool
sameColor' red red = true
sameColor' yellow yellow = true
sameColor' green green = true
sameColor' _ _ = false
```


3.6.3 Copattern matching

Functions that return an element of a record type can use copatterns to give the individual fields. The coverage check will ensure that there is a single case for each field of the record type. For example:

```
record Person : Set where
    field
        name : String
        age : Nat
open Person
bob : Person
name bob = "Bob"
age bob = 25
```

Absurd copatterns or wildcard copatterns are not supported.

3.6.4 Matching on indexed datatypes

When a function definition matches on an argument of an indexed datatype, the following conditions should be satisfied:

- For each clause that matches on a constructor pattern $c u_{1} \ldots u_{n}$, the indices of the type of the pattern should be unifiable with the indices of the datatype being matched on.
- For each constructor c that does not appear in a clause, unification of the indices of the type of the constructor with the indices of the datatype should end in a conflict.
For example, consider the definition of the head function on vectors:

```
data Vec (A : Set) : Nat }->\mathrm{ Set where
    [] : Vec A O
    _:__ : 
```



```
head (x :: xs) = x
```

The type of the pattern $x:: x s$ is Vec A (suc n), which is unifiable with the type Vec A (suc m). Meanwhile, unification of the type Vec A 0 of the constructor [] with the type Vec A (suc n) results in a conflict between 0 and suc n, so there is no case for [].

In case a function matches on several arguments and one or more of them are of indexed datatypes, only those combinations of arguments should be considered where the indices do not lead to a conflict. For example, consider the zipWith function on vectors:

```
zipWith: }\forall{{\textrm{ABCM}|->(\textrm{A}->\textrm{B}->\textrm{C})->\mathrm{ Vec A m }->\mathrm{ Vec B m }->\mathrm{ Vec C m
zipWith f [] [] = []
zipWith f (x :: xs) (y :: ys) = f x y :: zipWith f xs ys
```

Since both input vectors have the same length m, there is are no cases for the combinations where one vector has length 0 and the other has length suc n.

In the special case where unification ends in a conflict for all constructors, there should be a single absurd clase (as for an empty type). For example:

```
data Fin : Nat }->\mathrm{ Set where
    zero: }\forall{n}->Fin (suc n
    suc: }\forall{n}->Fin n -> Fin (suc n
no-fin-zero : Fin 0 }
no-fin-zero ()
```

In many common cases, absurd clauses may be omitted as long as the remaining clauses reveal sufficient information to indicate what arguments to case split on. As an example, consider the definition of the lookup function for vectors:

```
lookup : }\forall{A}{n}->VEC A n -> Fin n -> A
lookup [] ()
lookup (x :: xs) zero = x
lookup (x :: xs) (suc i) = lookup xs i
```

This definition pattern matches on both its (explicit) arguments in both the absurd clause and the two regular clauses. Hence it is allowed to leave out the absurd clause from the definition:

```
lookup' : }\forall{A} {n} -> Vec A n m Fin n -> A
lookup' (x :: xs) zero = x
lookup' (x :: xs) (suc i) = lookup' xs i
```

Refer to the next section for a precise explanation of when an absurd clause may be omitted.

3.6.5 General case

In the general case, the coverage checker constructs a case tree from the definition given by the user. It then ensures that the following properties are satisfied:

- The non-absurd clauses of a definition should arise as the leaves of the case tree.
- The absurd clauses of a definition should arise as the internal nodes of the case tree that have no children.
- Absurd clauses may be omitted if removing the corresponding internal nodes from the case tree does not result in other internal nodes becoming childless.
- Non-absurd clauses may be replaced by catchall clauses if (1) the patterns of those catchall clauses are more general than the omitted clauses, (2) the added catchall clauses are not more general than any of the clauses that follow it, and (3) removing the leaves corresponding to the omitted clauses does not result in any internal nodes becoming childless.

As an example, consider the case tree for the definition of the lookup function defined above:

```
lookup xs i = case xs of
    [] }->\mathrm{ case i of {}
    (x :: xs) }->\mathrm{ case i of
        zero }->\textrm{x
        (suc i) }->\mathrm{ lookup xs i
```

The absurd clause arises from the case split on i in the branch where $\mathrm{xs}=[]$, which leads to zero cases. The two normal clauses arise from the two leaves of the case tree. If the case [] \rightarrow case i of $\}$ is removed from the case tree, all the remaining internal nodes still have at least one child, hence the absurd clause may be left out of the definition.

For a full formal description of the algorithm that Agda uses to construct a case tree and check coverage of definitions by pattern matching, refer to the article Elaborating dependent (co)pattern matching: No pattern left behind.

3.7 Cubical

The Cubical mode extends Agda with a variety of features from Cubical Type Theory. In particular, computational univalence and higher inductive types which hence gives computational meaning to Homotopy Type Theory and Univalent Foundations. The version of Cubical Type Theory that Agda implements is a variation of the CCHM Cubical Type Theory where the Kan composition operations are decomposed into homogeneous composition and generalized transport. This is what makes the general schema for higher inductive types work, following the CHM paper.
To use the cubical mode Agda needs to be run with the --cubical command-line-option or with \{-\# OPTIONS --cubical \#-\} at the top of the file. There is also a variant of the cubical mode, activated using --erased-cubical, which is described below.

The cubical mode adds the following features to Agda:

1. An interval type and path types
2. Generalized transport (transp)

3. Partial elements

4. Homogeneous composition (hcomp)
5. Glue types
6. Higher inductive types
7. Cubical identity types

There is a standard agda/cubical library for Cubical Agda available at https://github.com/agda/cubical. This documentation uses the naming conventions of this library, for a detailed list of all of the built-in Cubical Agda files and primitives see Appendix: Cubical Agda primitives. The main design choices of the core part of the library are explained in https://homotopytypetheory.org/2018/12/06/cubical-agda/ (lagda rendered version: https://ice1000.org/ 2018/12-06-CubicalAgda.html).

The recommended way to get access to the Cubical primitives is to add the following to the top of a file (this assumes that the agda / cubical library is installed and visible to Agda).

```
{-# OPTIONS --cubical #-}
open import Cubical.Core.Everything
```

For detailed install instructions for agda/cubical see: https://github.com/agda/cubical/blob/master/INSTALL.md. In order to make this library visible to Agda add /path/to/cubical/cubical.agda-lib to .agda/ libraries and cubical to .agda/defaults (where path/to is the absolute path to where the agda/ cubical library has been installed). For details of Agda's library management see Library Management.

Expert users who do not want to rely on agda/cubical can just add the relevant import statements at the top of their file (for details see Appendix: Cubical Agda primitives). However, for beginners it is recommended that one uses at least the core part of the agda/cubical library.
There is also an older version of the library available at https://github.com/Saizan/cubical-demo/. However this is relying on deprecated features and is not recommended to use.

3.7.1 The interval and path types

The key idea of Cubical Type Theory is to add an interval type I : SSet (the reason this is in SSet is because it doesn't support the transp and hcomp operations). A variable i : I intuitively corresponds to a point in the real unit interval. In an empty context, there are only two values of type I : the two endpoints of the interval, i0 and i1.

```
i0 : I
i1 : I
```

Elements of the interval form a De Morgan algebra, with minimum (\wedge), maximum (\vee) and negation (\sim).

```
_^_ : I }->\mathrm{ I }->\mathrm{ I
_V_ : I }->\textrm{I}->\textrm{I
~_ : I }->\mathrm{ I
```

All the properties of De Morgan algebras hold definitionally. The endpoints of the interval io and i1 are the bottom and top elements, respectively.

```
i0 V i = i
i}V il = i
i}\vee\mp@code{j = j V i
i0 ^ i = i0
i1 ^ i = i
```

(continues on next page)

```
i}\wedge j = j ^ 
~ (~ i) = i
i0 = ~ il
~ (i \vee j) = ~ i ^ ~ j
~(i}\wedgej)=~i\vee~
```

The core idea of Homotopy Type Theory and Univalent Foundations is a correspondence between paths (as in topology) and (proof-relevant) equalities (as in Martin-Löf's identity type). This correspondence is taken very literally in Cubical Agda where a path in a type A is represented like a function out of the interval, I \rightarrow A. A path type is in fact a special case of the more general built-in heterogeneous path types:

```
-- PathP : \forall {l} (A : I }->\mathrm{ Set l) }->\mathrm{ A iO }->\mathrm{ A il }->\mathrm{ Set l
-- Non dependent path types
```



```
Path A a b = PathP (\lambda_ -> A) a b
```

The central notion of equality in Cubical Agda is hence heterogeneous equality (in the sense of P at hOver in HoTT). To define paths we use λ-abstractions and to apply them we use regular application. For example, this is the definition of the constant path (or proof of reflexivity):

```
refl: }\forall{{}}{A: Set l} {x : A} -> Path A x x
refl {x = x} = \lambda i }->\textrm{x
```

Although they use the same syntax, a path is not exactly the same as a function. For example, the following is not valid:

```
refl: }\forall{{\}{A: Set l} {x : A} -> Path A x x
refl {x = x} = \lambda (i : I) }->\textrm{x
```

Because of the intuition that paths correspond to equality PathP (λ i $\rightarrow \mathrm{A}) \mathrm{x}$ y gets printed as $\mathrm{x} \equiv \mathrm{y}$ when A does not mention i. By iterating the path type we can define squares, cubes, and higher cubes in Agda, making the type theory cubical. For example a square in A is built out of 4 points and 4 lines:

```
Square: }\forall{{l} {A : Set l} {x0 x1 y0 y1 : A } ->
    x0 \equivx1 -> y0 \equivy1 -> x0 \equiv y0 -> x1 \equiv y1 -> Set \ell
Square p q r s = PathP ( \lambda i }->\textrm{p}|\textrm{i}\equivq|i) r 
```

Viewing equalities as functions out of the interval makes it possible to do a lot of equality reasoning in a very direct way:

```
sym: }\forall{{{}{A:\operatorname{Set}{}{x y:A}->x\equivy->y\equiv
sym p = \lambda i }->\textrm{p}(~ i
```



```
    -> PathP (\lambda i }->\mathrm{ B (p i)) (f x) (f y)
cong f p i = f (p i)
```

Because of the way functions compute these satisfy some new definitional equalities compared to the standard Agda definitions:


```
symInv p = refl
```


(continues on next page)
(continued from previous page)

```
congId p = refl
```



```
    cong (\lambda a mg(f a)) p 三 cong g (cong f p)
congComp f g p = refl
```

Path types also lets us prove new things are not provable in standard Agda, for example function extensionality (pointwise equal functions are equal) has an extremely simple proof:


```
    ((x : A) }->\textrm{f}x\equiv\textrm{x}=\textrm{g}x)->\textrm{f}\equiv\textrm{g
funExt p i x = p x i
```


3.7.2 Transport

While path types are great for reasoning about equality they don't let us transport along paths between types or even compose paths, which in particular means that we cannot yet prove the induction principle for paths. In order to remedy this we also have a built-in (generalized) transport operation transp and homogeneous composition operations hcomp. The transport operation is generalized in the sense that it lets us specify where it is the identity function.

```
transp: : {l} (A : I -> Set l) (r : I) (a : A i0) }->\mathrm{ A A il
```

There is an additional side condition to be satisfied for a usage of transp to type-check: A should be a constant function whenever the constraint $r=i 1$ is satisfied. By constant here we mean that A is definitionally equal to λ_{-} \rightarrow A i0, which in turn requires A i0 and A il to be definitionally equal as well.
When r is i1, transp A r will compute as the identity function.

```
transp A il a = a
```

This is only sound if in such a case A is a trivial path, as the side condition requires.
It might seems strange that the side condition expects r and A to interact, but both of them can depend on any of the interval variables in scope, so assuming a specific value for r can affect what A looks like.

Some examples of the side condition for different values of r :

- If r is some in-scope variable i, on which A may depend as well, then A only needs to be a constant function when substituting il for i.
- If r is io then there is no restrition on A, since the side condition is vacuously true.
- If r is i1 then A must be a constant function.

We can use transp to define regular transport:

```
transport : }\forall{{}{A B : Set l} ->A \equiv B ->A A B
transport p a = transp (\lambda i }->\textrm{p}\mathrm{ i) i0 a
```

By combining the transport and min operations we can define the induction principle for paths:


```
    (d : P x refl) {y:A} (p : x = y)
    P y p
J P d p = transport ( }\lambda,i->P(p i) (\lambda j mp (i ^ j))) d,
```

One subtle difference between paths and the propositional equality type of Agda is that the computation rule for J does not hold definitionally. If J is defined using pattern-matching as in the Agda standard library then this holds, however as the path types are not inductively defined this does not hold for the above definition of J . In particular, transport in a constant family is only the identity function up to a path which implies that the computation rule for J only holds up to a path:

```
transportRefl : }\forall{{}}{A: Set l} (x : A) -> transport refl x \equiv x
transportRefl {A = A} x i = transp ( }
```



```
    (d : P x refl) }->\mathrm{ J P d refl 三 d
JRefl P d = transportRefl d
```

Internally in Agda the transp operation computes by cases on the type, so for example for Σ-types it is computed elementwise. For path types it is however not yet possible to provide the computation rule as we need some way to remember the endpoints of the path after transporting it. Furthermore, this must work for arbitrary higher dimensional cubes (as we can iterate the path types). For this we introduce the "homogeneous composition operations" (hcomp) that generalize binary composition of paths to n-ary composition of higher dimensional cubes.

3.7.3 Partial elements

In order to describe the homogeneous composition operations we need to be able to write partially specified ndimensional cubes (i.e. cubes where some faces are missing). Given an element of the interval r : I there is a predicate IsOne which represents the constraint $r=i 1$. This comes with a proof that i1 is in fact equal to i1 called $1=1$: IsOne i1. We use Greek letters like ϕ or ψ when such an r should be thought of as being in the domain of IsOne.

Using this we introduce a type of partial elements called Partial ϕ A, this is a special version of IsOne $\phi \rightarrow A$ with a more extensional judgmental equality (two elements of Partial ϕ A are considered equal if they represent the same subcube, so the faces of the cubes can for example be given in different order and the two elements will still be considered the same). The idea is that Partial ϕ A is the type of cubes in A that are only defined when IsOne ϕ. There is also a dependent version of this called PartialP ϕ A which allows A to be defined only when IsOne ϕ.

```
Partial : }\forall{{}->I->\mathrm{ Set }\ell->\mathrm{ SSet }
PartialP : \forall{l} -> (\phi : I) }->\mathrm{ Partial }\phi(\mathrm{ Set l) }->\mathrm{ SSet }
```

There is a new form of pattern matching that can be used to introduce partial elements:

```
partialBool : }\forall\mathrm{ i }->\mathrm{ Partial (i V ~ i) Bool
partialBool i (i = iO) = true
partialBool i (i = il) = false
```

The term partialBool i should be thought of a boolean with different values when (i=i0) and (i = il). Terms of type Partial ϕ A can also be introduced using a Pattern matching lambda.

```
partialBool' : }\forall\mathrm{ i }->\mathrm{ Partial (i V ~ i) Bool
partialBool' i = \lambda { (i = i0) }->\mathrm{ true
    ; (i = i1) }->\mathrm{ false }
```

When the cases overlap they must agree (note that the order of the cases doesn't have to match the interval formula exactly):

```
partialBool'' : }\forall\mathrm{ i j }->\mathrm{ Partial (~ i V i V (i ^ j)) Bool
partialBool'' i j = \lambda { (i = il) }\quad->\mathrm{ true
    ; (i = i1) (j = il) }->\mathrm{ true
    ; (i = i0) }\quad->\mathrm{ false }
```

Furthermore IsOne io is actually absurd.

```
empty : {A : Set} -> Partial i0 A
empty = \lambda { () }
```

Cubical Agda also has cubical subtypes as in the CCHM type theory:
$_\left[_\mapsto _\right]: \forall\{\mathcal{L}\}(\mathrm{A}: \operatorname{Set} \ell)(\phi: \mathrm{I})(\mathrm{u}: \operatorname{Partial} \phi \mathrm{A}) \rightarrow \operatorname{SSet} \mathcal{l}$
A $[\phi \mapsto \mathrm{u}]=\operatorname{Sub} A \phi u$
A term $v: A \quad[\phi \mapsto u]$ should be thought of as a term of type A which is definitionally equal to u : A when IsOne ϕ is satisfied. Any term u : A can be seen as an term of A [$\phi \mapsto u$] which agrees with itself on ϕ :

One can also forget that a partial element agrees with u on ϕ :

They satisfy the following equalities:

```
outs (ins a) = a
inS {\phi=\phi} (outS {\phi=\phi} a) =a
outs {\phi= i1} {u} _ = u 1=1
```

Note that given a : A [$\phi \mapsto \mathrm{u}]$ and α : IsOne ϕ, it is not the case that outS a $=\mathrm{u} \alpha$; however, underneath the pattern binding ($\phi=i 1$), one has outs $a=u 1=1$.

With all of this cubical infrastructure we can now describe the hcomp operations.

3.7.4 Homogeneous composition

The homogeneous composition operations generalize binary composition of paths so that we can compose multiple composable cubes.

```
hcomp: }\forall{{} {A: Set l} {\phi: I} (u : I -> Partial \phi A) (u0: A) -> A
```

When calling hcomp $\{\phi=\phi\}$ u u0 Agda makes sure that $u 0$ agrees with u io on ϕ. The idea is that $u 0$ is the base and u specifies the sides of an open box. This is hence an open (higher dimensional) cube where the side opposite of $u 0$ is missing. The hcomp operation then gives us the missing side opposite of $u 0$. For example binary composition of paths can be written as:


```
compPath {x = x} p q i = hcomp ( }\lambda\textrm{j}->\lambda|{(i=i0) -> x x
    ; (i = il) }->\mathrm{ q j })
    (p i)
```

Pictorially we are given $p: \quad x \equiv y$ and $q: y \equiv z$, and the composite of the two paths is obtained by computing the missing lid of this open square:

In the drawing the direction i goes left-to-right and j goes bottom-to-top. As we are constructing a path from x to z along i we have i : I in the context already and we put $p i$ as bottom. The direction j that we are doing the composition in is abstracted in the first argument to hcomp.

Note that the partial element u does not have to specify all the sides of the open box, giving more sides simply gives you more control on the result of hcomp. For example if we omit the ($\mathrm{i}=\mathrm{i} 0$) $\rightarrow \mathrm{x}$ side in the definition of compPath we still get a valid term of type A. However, that term would reduce to hcomp ($\backslash \mathrm{j} \rightarrow$ \ () \}) x when $\mathrm{i}=i 0$ and so that definition would not build a path that starts from x .
We can also define homogeneous filling of cubes as

```
hfill : }\forall{{\} {A: Set {} {\phi: I }
    (u : \forall i -> Partial \phi A) (u0 : A [ \phi \mapsto u i0 ])
    (i : I) }->\textrm{A
```



```
    ; (i = iO) -> outS uO })
    (outS u0)
```

When i is $i 0$ this is $u 0$ and when i is il this is hcomp u $u 0$. This can hence be seen as giving us the interior of an open box. In the special case of the square above $h f i l l$ gives us a direct cubical proof that composing p with refl is p.

```
compPathRefl: }\forall{{\mathcal{l}{A: Set {} {x y : A} (p : x 三 y) -> compPath p refl \equiv
compPathRefl {x = x} {y=y} p j i = hfill ( }\lambda
        ; (i = il) }->\mathrm{ y })
    (inS (p i))
    (~ j)
```


3.7.5 Glue types

In order to be able to prove the univalence theorem we also have to add "Glue" types. These lets us turn equivalences between types into paths between types. An equivalence of types A and B is defined as a map $f: A \rightarrow B$ such that its fibers are contractible.


```
fiber {A=A} f y = \Sigma[x\inA ] f x = y
iscontr : }\forall{{\}->\mathrm{ Set }\ell->\mathrm{ Set }
isContr A = \Sigma[x x A ] ( }\forall\textrm{A}|\textrm{y}->\textrm{x}\equiv\textrm{y}
record isEquiv {l} {A B : Set l} (f : A }->\mathrm{ B) : Set { where
    field
        equiv-proof : (y : B) }->\mathrm{ isContr (fiber f y)
___: }\forall{{\} (A B : Set l) -> Set l
A\simeqB=\Sigma[f G (A B B ] (isEquiv f)
```

The simplest example of an equivalence is the identity function.

```
idfun : }\forall{{}->(A : Set l) -> A -> A
idfun _ x = x
idIsEquiv : }\forall{\mp@code{{} (A : Set l) }->\mathrm{ isEquiv (idfun A)
equiv-proof (idIsEquiv A) y =
    ((y , refl) , \lambda z i }->\mathrm{ z .snd (~ i) , }\lambda j > z .snd (~ i V j))
idEquiv : }\forall{{} (A : Set l) -> A \simeq A
idEquiv A = (idfun A , idIsEquiv A)
```

An important special case of equivalent types are isomorphic types (i.e. types with maps going back and forth which are mutually inverse): https://github.com/agda/cubical/blob/master/Cubical/Foundations/Isomorphism.agda.

As everything has to work up to higher dimensions the Glue types take a partial family of types that are equivalent to the base type A:

```
Glue : }\forall{{{'} (A : Set l) {\phi : I }
    Partial \phi (\Sigma[ T \in Set [' ] T \simeq A) }->\mathrm{ Set ['
```

These come with a constructor and eliminator:

```
glue: }\forall{{\mp@subsup{{}{}{\prime}}{A:Set {} {\phi: I} {Te: Partial \phi (\Sigma[T G Set [' ] T \simeq A)
    ->PartialP \phi T }->\textrm{A}->\mathrm{ Glue A Te
unglue: }\forall{{\{'} {A: Set l} (\phi: I) {Te : Partial \phi (\Sigma[T G Set [' ] T ^ A)
    Glue A Te }->\textrm{A
```

Using Glue types we can turn an equivalence of types into a path as follows:


```
ua {_} {A} {B} e i = Glue B (\lambda { (i = i0) }->(A,e
    ; (i = i1) }->(\textrm{B}, idEquiv B) }
```

The idea is that we glue A together with B when $i=i 0$ using e and B with itself when $i=i 1$ using the identity equivalence. This hence gives us the key part of univalence: a function for turning equivalences into paths. The other part of univalence is that this map itself is an equivalence which follows from the computation rule for ua:

```
ua\beta:\forall{{} {A B : Set {} (e : A \simeq B) (x : A) -> transport (ua e) x \equiv e .fst x
ua}\beta\mathrm{ e x = transportRefl (e .fst x)
```

Transporting along the path that we get from applying ua to an equivalence is hence the same as applying the equivalence. This is what makes it possible to use the univalence axiom computationally in Cubical Agda: we can package up our equivalences as paths, do equality reasoning using these paths, and in the end transport along the paths in order to compute with the equivalences.

We have the following equalities:

```
Glue A {il} Te = Te 1=1 .fst
unglue }\phi\mathrm{ (glue t a) = a
glue (\{ (\phi= il) -> g}) (unglue \phi g) = g
unglue il {Te} g = Te 1=1 . snd .fst g
glue {\phi= il} t a = t 1=1
```

For more results about Glue types and univalence see https://github.com/agda/cubical/blob/master/Cubical/Core/Glue. agda and https://github.com/agda/cubical/blob/master/Cubical/Foundations/Univalence.agda. For some examples of what can be done with this for working with binary and unary numbers see https://github.com/agda/cubical/blob/ master/Cubical/Data/BinNat/BinNat.agda.

3.7.6 Higher inductive types

Cubical Agda also lets us directly define higher inductive types as datatypes with path constructors. For example the circle and torus can be defined as:

```
data S S : Set where
    base : S }\mp@subsup{}{}{1
    loop : base \equiv base
data Torus : Set where
    point : Torus
    line1 : point \equiv point
    line2 : point \equiv point
    square : PathP ( }\lambda\mathrm{ i }->\mathrm{ line1 i 三 line1 i) line2 line2
```

Functions out of higher inductive types can then be defined using pattern-matching:

```
t2c: Torus }->\mp@subsup{S}{}{1}\times\mp@subsup{S}{}{1
t2c point = (base , base)
t2c (line1 i) = (loop i , base)
t2c (line2 j) = (base , loop j)
t2c (square i j) = (loop i , loop j)
c2t : S S }\times\mp@subsup{\mp@code{S}}{}{1}->\mathrm{ Torus
c2t (base , base) = point
c2t (loop i , base) = line1 i
c2t (base , loop j) = line2 j
c2t (loop i , loop j) = square i j
```

When giving the cases for the path and square constructors we have to make sure that the function maps the boundary to the right thing. For instance the following definition does not pass Agda's typechecker as the boundary of the last case does not match up with the expected boundary of the square constructor (as the line1 and line 2 cases are mixed up).

```
c2t_bad : S }\mp@subsup{}{}{1}\times\mp@subsup{S}{}{1}->\mathrm{ Torus
c2t_bad (base , base) = point
c2t_bad (loop i , base) = line2 i
c2t_bad (base , loop j) = line1 j
c2t_bad (loop i , loop j) = square i j
```

Functions defined by pattern-matching on higher inductive types compute definitionally, for all constructors.

```
c2t-t2c: \forall (t : Torus) }->\mathrm{ c2t (t2c t) }\equiv
c2t-t2c point = refl
c2t-t2c (line1 _) = refl
c2t-t2c (line2 _) = refl
c2t-t2c (square _ _) = refl
t2c-c2t: }\forall(\textrm{p}:\mp@subsup{S}{}{1}\times\mp@subsup{S}{}{1})->t2c(c2t p) \equiv 
t2c-c2t (base , base) = refl
t2c-c2t (base , loop _) = refl
```

```
t2c-c2t (loop _ , base) = refl
t2c-c2t (loop _ , loop _) = refl
```

By turning this isomorphism into an equivalence we get a direct proof that the torus is equal to two circles.


```
Torus\equivS }\mp@subsup{}{}{1}\times\mp@subsup{S}{}{1}=\mathrm{ isoToPath (iso t2c c2t t2c-c2t c2t-t2c)
```

Cubical Agda also supports parameterized and recursive higher inductive types, for example propositional truncation (squash types) is defined as:

```
data |_|| {{} (A : Set l) : Set { where
    |_|:A A | A |
    squash : }\forall(\textrm{x y : | A|) -> x \equiv y
isProp : }\forall{{}->\mathrm{ Set }\ell->\mathrm{ Set }
isProp A = (x y : A) }->\textrm{x}\equiv\textrm{x
recPropTrunc: }\forall{{}{A: Set l} {P : Set l} -> isProp P -> (A ->P) -> | A | | P
recPropTrunc Pprop f | x | = f x
recPropTrunc Pprop f (squash x y i) =
    Pprop (recPropTrunc Pprop f x) (recPropTrunc Pprop f y) i
```

For many more examples of higher inductive types see: https://github.com/agda/cubical/tree/master/Cubical/HITs.

3.7.7 Cubical identity types and computational HoTT/UF

As mentioned above the computation rule for J does not hold definitionally for path types. Cubical Agda solves this by introducing a cubical identity type. The https://github.com/agda/cubical/blob/master/Cubical/Core/Id.agda file exports all of the primitives for this type, including the notation \equiv_{\ldots} and a J eliminator that computes definitionally on refl.

The cubical identity type and the path type are equivalent, so all of the results for one can be transported to the other one (using univalence). Using this we have implemented an interface to HoTT/UF which provides the user with the key primitives of Homotopy Type Theory and Univalent Foundations implemented using cubical primitives under the hood. This hence gives an axiom free version of HoTT/UF which computes properly.

```
module Cubical.Core.HoTT-UF where
open import Cubical.Core.Id public
    using ( _三_ -- The identity type.
            ; refl -- Unfortunately, pattern matching on refl is not
\hookrightarrowavailable.
            ; J -- Until it is, you have to use the induction principle J.
            ; transport -- As in the HoTT Book.
            ; ap
            ; --
            ; _-
            ; _\equiv\langle_\rangle_ -- Standard equational reasoning.
            ; _■
            ; funExt -- Function extensionality
            -- (can also be derived from univalence).
```

```
(continued from previous page)
```

```
    ; -- Sum type. Needed to define contractible types,u
```

 ; -- Sum type. Needed to define contractible types,u
 ->equivalences
->equivalences
; -'- -- and univalence.
; -'- -- and univalence.
; pr. -- The eta rule is available.
; pr. -- The eta rule is available.
; pr2
; pr2
isProp -- The usual notions of proposition, contractible type, set.
isProp -- The usual notions of proposition, contractible type, set.
isContr
isContr
isSet
isSet
isEquiv -- A map with contractible fibers
isEquiv -- A map with contractible fibers
-- (Voevodsky's version of the notion).
-- (Voevodsky's version of the notion).
工
工
; EquivContr -- A formulation of univalence.
; EquivContr -- A formulation of univalence.
; |_|| -- Propositional truncation.
; |_|| -- Propositional truncation.
; |_| -- Map into the propositional truncation.
; |_| -- Map into the propositional truncation.
; |||-isProp -- A truncated type is a proposition.
; |||-isProp -- A truncated type is a proposition.
|||-recursion -- Non-dependent elimination.
|||-recursion -- Non-dependent elimination.
|||-induction -- Dependent elimination.

```
    |||-induction -- Dependent elimination.
```

In order to get access to only the HoTT/UF primitives start a file as follows:

```
{-# OPTIONS --cubical #-}
open import Cubical.Core.HoTT-UF
```

However, even though this interface exists it is still recommended that one uses the cubical identity types unless one really need J to compute on refl. The reason for this is that the syntax for path types does not work for the identity types, making many proofs more involved as the only way to reason about them is using J. Furthermore, the path types satisfy many useful definitional equalities that the identity types don't.

3.7.8 Cubical Agda with erased glue

The option --erased-cubical enables a variant of Cubical Agda in which glue (and the other builtins defined in Agda. Builtin. Cubical.Glue) must only be used in erased settings.

Regular Cubical Agda code can import code that uses --erased-cubical. Regular Cubical Agda code can also be imported from code that uses --erased-cubical, but names defined using Cubical Agda are treated as if they had been marked as erased, with some exceptions related to pattern matching:

- Matching on a non-erased imported constructor does not, on its own, make Agda treat the right-hand side as erased.
- Non-erased imported constructors count as non-erased for the purposes of the run-time mode rule that one "cannot pattern match on erased arguments, unless there is at most one valid case (not counting erased constructors)".
The reason for these exceptions is that it should be possible to import the code from modules that use --cubical, in which the non-erased constructors are not treated as erased.

Note that names that are re-exported from a Cubical Agda module using open import M args public are seen as defined using Cubical Agda.

3.7.9 References

Cyril Cohen, Thierry Coquand, Simon Huber and Anders Mörtberg; "Cubical Type Theory: a constructive interpretation of the univalence axiom".
Thierry Coquand, Simon Huber, Anders Mörtberg; "On Higher Inductive Types in Cubical Type Theory".

3.7.10 Appendix: Cubical Agda primitives

The Cubical Agda primitives and internals are exported by a series of files found in the lib/prim/Agda/ Builtin/Cubical directory of Agda. The agda/cubical library exports all of these primitives with the names used throughout this document. Experts might find it useful to know what is actually exported as there are quite a few primitives available that are not really exported by agda/cubical, so the goal of this section is to list the contents of these files. However, for regular users and beginners the agda/cubical library should be sufficient and this section can safely be ignored.

The key file with primitives is Agda.Primitive.Cubical. It exports the following BUILTIN, primitives and postulates:

```
{-# BUILTIN INTERVAL I #-} -- I : SSet
{-# BUILTIN IZERO iO #-}
{-# BUILTIN IONE il #-}
infix 30 primINeg
infixr 20 primIMin primIMax
primitive
    primIMin : I }->\mathrm{ I }->\mathrm{ I -- _^_
    primIMax : I }->\mathrm{ I }->\mathrm{ I -- _V_
    primINeg : I }->\mathrm{ I -- ~_
{-# BUILTIN ISONE IsOne #-} -- IsOne : I -> SSet
postulate
    itIsOne : IsOne i1 -- 1=1
    IsOne1 : }\forall\mathrm{ i j }->\mathrm{ IsOne i }->\mathrm{ IsOne (primIMax i j)
    IsOne2 : }\forall\mathrm{ i j }->\mathrm{ IsOne j }->\mathrm{ IsOne (primIMax i j)
{-# BUILTIN ITISONE itIsOne #-}
{-# BUILTIN ISONE1 IsOne1 #-}
{-# BUILIIN ISONE2 ISOne2 #-}
{-# BUILTIN PARTIAL Partial #-}
{-# BUILTIN PARTIALP PartialP #-}
postulate
    isOneEmpty : \forall {a} {A : Partial i0 (Set a)} -> PartialP iO A
{-# BUILTIN ISONEEMPTY isOneEmpty #-}
primitive
    primPOr : \forall {a} (i j : I) {A : Partial (primIMax i j) (Set a)}
            P PartialP i ( }\lambda\textrm{z}->\textrm{A}(\mathrm{ IsOne1 i j z)) }->\mathrm{ PartialP j ( }\lambda\textrm{z}->\textrm{A}(IsOne2 i j
Gz))
            -> PartialP (primIMax i j) A
    -- Computes in terms of primHComp and primTransp
```



```
G A i0) }->\mathrm{ A il
```

(continues on next page)

```
syntax primPOr p q u t = [ p \mapsto u , q \mapsto t ]
primitive
    primTransp : \forall {a} (A : (i : I) }->\mathrm{ Set (a i)) ( }\phi=|\mathrm{ I) }->(a: A i0) -> A il
    primHComp : \forall {a} {A : Set a} {\phi : I} }->(\forall i -> Partial \phi A) -> A -> A
```

The Path types are exported by Agda. Builtin. Cubical. Path:

```
postulate
    PathP: }\forall{\}(A):I->\mathrm{ Set l) }->\mathrm{ A i0 }->\mathrm{ A il }->\mathrm{ Set l
{-# BUILTIN PATHP PathP #-}
infix 4 _ 三_
_\equiv_ : }\forall{{\}{\textrm{A}:\operatorname{Set {}}->\textrm{A}->\textrm{A}->\mathrm{ Set }
_\equiv_ {A = A} = PathP (\lambda__ A )
{-# BUILTIN PATH _ =_ #-}
```

The Cubical subtypes are exported by Agda.Builtin. Cubical.Sub:

```
{-# BUILTIN SUB Sub #-}
postulate
    inc: }\forall{{}{A:Set {} {\phi} (x : A) -> Sub A \phi (\lambda_ -> x
{-# BUILTIN SUBIN inS #-}
primitive
    primSubOut : }\forall{{\mathcal{C}}{A:Set {} {\phi: I} {u : Partial \phi A } -> Sub _ | u -> A
```

The Glue types are exported by Agda.Builtin. Cubical.Glue:

```
record isEquiv {l ['} {A : Set l} {B : Set l'} (f : A }->\mathrm{ B) : Set ({ ப l') where
    field
        equiv-proof : (y : B) }->\mathrm{ isContr (fiber f y)
infix 4 _工_
___ : }\forall{{['} (A : Set l) (B : Set (') -> Set (l \sqcup ('),
A\simeqB=\Sigma(A)B
```



```
equivFun e = fst e
equivProof : }\forall\mathrm{ {la lt} (T : Set la) (A : Set lt) }->\mathrm{ (w : T }\simeqA) -> (a : A),
            ->\forall\psi->(Partial \psi (fiber (w .fst) a)) }->\mathrm{ fiber (w .fst) a
equivProof A B w a \psi fb = contr' {A = fiber (w .fst) a} (w .snd .equiv-proof a) \psi fb
    where
        contr' : \forall {\mathcal{L}{ {A : Set {} }->\mathrm{ isContr A }->(\phi: I) -> (u : Partial \phi A) -> A
        contr' {A = A} (c , p) \phi u = hcomp ( }\lambda\mathrm{ i }->\lambda{(\phi=i1) -> p (u 1=1) i
                        ; (\phi = i0) }->\mathrm{ c }) c
{-# BUILTIN EQUIV -\simeq_ #-}
{-# BUILTIN EQUIVFUN equivFun #-}
{-# BUILTIN EQUIVPROOF equivProof #-}
```

```
primitive
    primGlue : }\forall{{{'} (A : Set l) {\phi : I}
        ->(T : Partial \phi (Set [')) -> (e : PartialP \phi (\lambda O -> T O \simeq A))
        Set l'
    prim^glue : }\forall{{{\mp@subsup{l}{}{\prime}}{A: Set l} {\phi: I
        ->{T: Partial \phi (Set [')} }->{\mp@code{e : PartialP \phi (\lambda O T T O \simeqA) }
        P PartialP \phi T }->\textrm{A}->\mathrm{ primGlue A T e
    prim^unglue : }\forall{{\{'} {A : Set {} {\phi: I
        ->{T: Partial \phi (Set [')} -> {e: PartialP \phi (\lambda O -> T O \simeq A) }
        primGlue A T e }->\mathrm{ A
    primFaceForall : (I }->\textrm{I})->\textrm{I
-- pathToEquiv proves that transport is an equivalence (for details
-- see Agda.Builtin.Cubical.Glue). This is needed internally.
{-# BUILTIN PATHTOEQUIV pathToEquiv #-}
```

Note that the Glue types are uncurried in agda/cubical to make them more pleasant to use:

```
Glue : }\forall{{{ ['} (A : Set l) {\phi : I}
    ->(Te : Partial \phi (\Sigma[ T G Set l' ] T \simeq A))
    Set l'
Glue A Te = primGlue A ( }\lambda\textrm{A}->\textrm{x}->\textrm{Te}\textrm{x}.\mathrm{ .fst ) ( }\lambda\textrm{x}->\textrm{x}->\textrm{Te}\textrm{x}.\mathrm{ .snd)
```

The Agda.Builtin. Cubical.Id exports the cubical identity types:

```
postulate
```



```
{-# BUILTIN ID Id #-}
{-# BUILTIN CONID conid #-}
primitive
    primDepIMin :
    primIdFace : }\forall{{}{A: Set {} {x y : A} -> Id x y -> I
    primIdPath : }\forall{{}{A:Set {} {x y : A} -> Id x y m x \equiv y
primitive
    primIdJ: }\forall{{\{'} {A: Set {} {x : A } (P : \forall y -> Id x y -> Set {') ->
                        P x (conid il ( \lambda i }->\textrm{x}))->\mp@code{\forall {y} (p : Id x y) }->\textrm{P}\mathrm{ ( y p
primitive
    primIdElim : }\forall{{ac} {A: Set a} {x : A
            (C : (y : A) }->\mathrm{ Id x y }->\mathrm{ Set c) }
            ((\phi : I) (y : A [ \phi \mapsto (\lambda_ -> x) ])
            (w : (x \equiv outS y) [ \phi \mapsto (\lambda { ( 
            C (outS y) (conid \phi (outS w))) }
            {y:A} (p:Id x y) -> C y p
```


3.8 Cumulativity

3.8.1 Basics

Since version 2.6.1, Agda supports optional cumulativity of universes under the --cumulativity flag.

```
{-# OPTIONS --cumulativity #-}
```

When the --cumulativity flag is enabled, Agda uses the subtyping rule Set $i=<\operatorname{Set} j$ whenever $i=<j$. For example, in addition to its usual type Set, Nat also has the type Set_{1} and even Set i for any i : Level.

```
_ : Set
- = Nat
_ : Set
_ = Nat
_: }\forall{{i}->\mathrm{ Set i
_= Nat
```

With cumulativity is enabled, one can implement lifting to a higher universe as the identity function.

```
lift : }\forall{\mp@code{a b}}->\mathrm{ Set a }->\mathrm{ Set (a ப b)
lift x = x
```


3.8.2 Example usage: N -ary functions

In Agda without cumulativity, it is tricky to define a universe-polymorphic N -ary function type $\mathrm{A} \rightarrow \mathrm{A} \rightarrow \ldots \rightarrow$ $A \rightarrow B$ because the universe level depends on whether the number of arguments is zero:

```
module Without-Cumulativity where
    N-ary-level : Level }->\mathrm{ Level }->\mathrm{ Nat }->\mathrm{ Level
    N-ary-level }\mp@subsup{\ell}{1}{}\mp@subsup{\ell}{2}{}\mathrm{ zero = \ \ 2
    N-ary-level }\mp@subsup{\ell}{1}{}\mp@subsup{\ell}{2}{}(\mathrm{ suc n) = < < }\sqcup\textrm{N}\mathrm{ -ary-level }\mp@subsup{\ell}{1}{}\mp@subsup{\ell}{2}{}\textrm{n
    N-ary : }\forall{{\mp@subsup{\ell}{1}{}\mp@subsup{\ell}{2}{}}\textrm{n}->\mathrm{ Set }\mp@subsup{\ell}{1}{}->\mathrm{ Set }\mp@subsup{\ell}{2}{}->\mathrm{ Set (N-ary-level }\mp@subsup{\ell}{1}{}\mp@subsup{\ell}{2}{}\textrm{n}
    N-ary zero A B = B
    N-ary (suc n) A B = A }->\textrm{N}\mathrm{ -ary n A B
```

In contrast, in Agda with cumulativity one can always work with the highest possible universe level. This makes it much easier to define the type of N -ary functions.

```
module With-Cumulativity where
    N-ary : Nat }->\mathrm{ Set }\mp@subsup{\ell}{1}{}->\mathrm{ Set }\mp@subsup{\ell}{2}{}->\mathrm{ Set ( ( & }\sqcup\mp@subsup{\ell}{2}{}
    N-ary zero A B = B
    N-ary (suc n) A B = A }->\textrm{N}\mathrm{ -ary n A B
    curry }\mp@subsup{}{}{n}:(Vec A n -> B) -> N-ary n A B
    curry }\mp@subsup{}{}{n}{\textrm{n}=\mathrm{ zero} f = f []
    curry}\mp@subsup{}{}{n}{\textrm{n}=\mp@subsup{\operatorname{suc}}{\textrm{n}}}{\textrm{f}}=\lambda\textrm{x}->\mp@subsup{\operatorname{curry}}{}{n}\lambda\textrm{xs}->\textrm{f}(\textrm{x}::\textrm{xs}
    _$n_ N-ary n A B }->(\mathrm{ Vec A n }->\mathrm{ ( B)
    f $ [ [] = f
    f $ ( }\mp@subsup{|}{}{n
```



```
    \foralln}\mathrm{ zero }\textrm{P}=\textrm{P
    \foralln}(\mathrm{ suc n) P = * x }->\mp@subsup{\forall}{}{n}\textrm{n}(\textrm{P}x
```


3.8.3 Limitations

Currently cumulativity only enables subtyping between universes, but not between any other types containing universes. For example, List Set is not a subtype of List Set_{1}. Agda also does not have cumulativity for any other types containing universe levels, so List \{lzero\} Nat is not a subtype of List \{lsuc lzero\} Nat. Such rules might be added in a future version of Agda.

3.8.4 Constraint solving

When working in Agda with cumulativity, universe level metavariables are often underconstrained. For example, the expression List Nat could mean List \{lzero\} Nat, but also List \{lsuc lzero\} Nat, or indeed List \{i\} Nat for any i : Level.

Currently Agda uses the following heuristic to instantiate universe level metavariables. At the end of each type signature, each mutual block, or declaration that is not part of a mutual block, Agda instantiates all universe level metavariables that are unbounded from above. A metavariable _l : Level is unbounded from above if all unsolved constraints that mention the metavariable are of the form $a_{i}=<__{l}$: Level, and _l does not occur in the type of any other unsolved metavariables. For each metavariable that satisfies these conditions, it is instantiated to $a_{1} \sqcup$ $a_{2} \sqcup \ldots \quad$.. $\sqcup a_{n}$ where $a_{1}=<__{l}$: Level, $\ldots, a_{n}=<l_{l}$: Level are all constraints that mention l.

The heuristic as described above is considered experimental and is subject to change in future versions of Agda.

3.9 Data Types

3.9.1 Simple datatypes

Example datatypes

In the introduction we already showed the definition of the data type of natural numbers (in unary notation):

```
data Nat : Set where
    zero : Nat
    suc : Nat }->\mathrm{ Nat
```

We give a few more examples. First the data type of truth values:

```
data Bool : Set where
    true : Bool
    false : Bool
```

The True set represents the trivially true proposition:

```
data True : Set where
    tt : True
```

The False set has no constructor and hence no elements. It represents the trivially false proposition:

```
data False : Set where
```

Another example is the data type of non-empty binary trees with natural numbers in the leaves:

```
data BinTree : Set where
    leaf : Nat }->\mathrm{ BinTree
    branch : BinTree }->\mathrm{ BinTree }->\mathrm{ BinTree
```

Finally, the data type of Brouwer ordinals:

```
data Ord : Set where
    zeroOrd : Ord
    sucOrd : Ord }->\mathrm{ Ord
    limOrd : (Nat }->\mathrm{ Ord) }->\mathrm{ Ord
```


General form

The general form of the definition of a simple datatype D is the following

```
data D : Set i where
    C1 : A A
    ...
    Cn}:\mp@subsup{A}{n}{
```

The name D of the data type and the names $\mathrm{c}_{1}, \ldots, \mathrm{c}_{n}$ of the constructors must be new w.r.t. the current signature and context, and the types A_{1}, \ldots, A_{n} must be function types ending in D, i.e. they must be of the form

```
(y1 : B B ) -> .. 
```


3.9.2 Parametrized datatypes

Datatypes can have parameters. They are declared after the name of the datatype but before the colon, for example:

```
data List (A : Set) : Set where
    [] : List A
    _:_ : A }->\mathrm{ List A }->\mathrm{ List A
```


3.9.3 Indexed datatypes

In addition to parameters, datatypes can also have indices. In contrast to parameters which are required to be the same for all constructors, indices can vary from constructor to constructor. They are declared after the colon as function arguments to Set. For example, fixed-length vectors can be defined by indexing them over their length of type Nat:

```
data Vector (A : Set) : Nat }->\mathrm{ Set where
    [] : Vector A zero
    _:_: {n : Nat } }->\textrm{A}->\mathrm{ Vector A n }->\mathrm{ Vector A (suc n)
```

Notice that the parameter A is bound once for all constructors, while the index $\{\mathrm{n}$: Nat \} must be bound locally in the constructor _::-

Indexed datatypes can also be used to describe predicates, for example the predicate Even : Nat \rightarrow Set can be defined as follows:

```
data Even : Nat }->\mathrm{ Set where
    even-zero : Even zero
    even-plus2 : {n : Nat} }->\mathrm{ Even n }->\mathrm{ Even (suc (suc n))
```


General form

The general form of the definition of a (parametrized, indexed) datatype D is the following

```
data D ( }\mp@subsup{\textrm{X}}{1}{}:\mp@subsup{P}{1}{})\ldots(\mp@subsup{x}{k}{}:\mp@subsup{P}{k}{}):(\mp@subsup{y}{1}{}:\mp@subsup{Q}{1}{})->\ldots,\ldots(\mp@subsup{y}{l}{}:\mp@subsup{Q}{l}{})->\mp@code{Set l where
    C1 : A A
    Cn}:\mp@subsup{A}{n}{
```

where the types A_{1}, \ldots, A_{n} are function types of the form

```
(z1 : }\mp@subsup{\textrm{B}}{1}{})->\ldots->(\mp@subsup{\textrm{z}}{m}{}:\mp@subsup{\textrm{B}}{m}{})->\textrm{D
```


3.9.4 Strict positivity

When defining a datatype D, Agda poses an additional requirement on the types of the constructors of D, namely that D may only occur strictly positively in the types of their arguments.

Concretely, for a datatype with constructors $c_{1}: A_{1}, \ldots, c_{n}: A_{n}$, Agda checks that each A_{i} has the form

```
(y }\mp@subsup{\textrm{y}}{1}{}:\mp@subsup{\textrm{B}}{1}{})->\ldots->(\mp@subsup{y}{m}{}:\mp@subsup{\textrm{B}}{m}{})->\textrm{D
```

where an argument types B_{i} of the constructors is either

- non-inductive (a side condition) and does not mention D at all,
- or inductive and has the form

```
( }\mp@subsup{\textrm{z}}{1}{}:\mp@subsup{\textrm{C}}{1}{})->\ldots, ->(\mp@subsup{z}{k}{}:\mp@subsup{C}{k}{})->\textrm{D
```

where D must not occur in any C_{j}.
The strict positivity condition rules out declarations such as

```
data Bad : Set where
    bad : (Bad }->\textrm{Bad})->\textrm{Bad
    -- A B C
    -- A is in a negative position, B and C are OK
```

since there is a negative occurrence of Bad in the type of the argument of the constructor. (Note that the corresponding data type declaration of Bad is allowed in standard functional languages such as Haskell and ML.).
Non strictly-positive declarations are rejected because they admit non-terminating functions.
If the positivity check is disabled, so that a similar declaration of Bad is allowed, it is possible to construct a term of the empty type, even without recursion.

```
{-# OPTIONS --no-positivity-check #-}
```

```
data }\perp\mathrm{ : Set where
data Bad : Set where
    bad : (Bad }->\perp)->\mathrm{ Bad
self-app : Bad }->
self-app (bad f) = f (bad f)
absurd : }
absurd = self-app (bad self-app)
```

For more general information on termination see Termination Checking.

3.10 Flat Modality

The flat/crisp attribute $@ b / @ f l$ at is an idempotent comonadic modality modeled after Spatial Type Theory and Crisp Type Theory. It is similar to a necessity modality.

We can define b A as a type for any ($@$ A : Set l) via an inductive definition:

```
data b {@b l : Level} (@b A : Set l) : Set l where
    con : (@b x : A) }->\mathrm{ b A
counit: {@b l : Level} {@b A : Set l} ->b A ->A
counit (con x) = x
```

When trying to provide $a @ b$ arguments only other $@ b$ variables will be available, the others will be marked as $@ T$ in the context. For example the following will not typecheck:

```
unit : {@b l : Level} {@b A : Set l} ->A -> b A
```

unit $x=\operatorname{con} x$

3.10.1 Pattern Matching on @

Agda allows matching on $@ b$ arguments by default. When matching on a $@ b$ argument the flat status gets propagated to the arguments of the constructor

```
data _ #_ (A B : Set) : Set where
    inl:A A A }\uplus
    inr:B}->\textrm{B}|\textrm{A
flat-sum : {@b A B : Set } -> (@b x : A }\uplus\textrm{B})->b\textrm{A}\uplusb\textrm{B
flat-sum (inl x) = inl (con x)
flat-sum (inr x) = inr (con x)
```

When refining $@ b$ variables the equality also needs to be provided as $@ b$

```
flat-subst : {@b A : Set} {P : A }->\mathrm{ Set } (@b x y : A) (@b eq : x 三 y) }->\textrm{P
flat-subst x .x refl p = p
```

if we simply had (eq : $\mathrm{x} \equiv \mathrm{y}$) the code would be rejected.
Pattern matching on $@ b$ arguments can be disabled entirely by using the --no-flat-split flag

```
{-# OPTIONS --no-flat-split #-}
```


Subtyping of flat function spaces

Normally, if $\mathrm{f}:(@ b \mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B}$ then we have $\lambda \mathrm{x} \rightarrow \mathrm{f} \mathrm{x}:(\mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B}$ but not $\mathrm{f}: \quad(\mathrm{x}$ $: A$) \rightarrow B. When the option --subtyping is enabled, Agda will make use of the subtyping rule ($@ b \mathrm{x}:$
A) $\rightarrow B<:(x: A) \rightarrow B$, so there is no need for eta-expanding the function f.

3.11 Foreign Function Interface

- Compiler Pragmas
- Haskell FFI
- The FOREIGN pragma
- The COMP ILE pragma
- Using Haskell Types from Agda
- Using Haskell functions from Agda
- Using Agda functions from Haskell
- Polymorphic functions
- Level-polymorphic types
- Handling typeclass constraints
- JavaScript FFI

3.11.1 Compiler Pragmas

There are two backend-generic pragmas used for the FFI:

```
{-# COMPILE <Backend> <Name> <Text> #-}
{-# FOREIGN <Backend> <Text> #-}
```

The COMP ILE pragma associates some information <Text> with a name <Name> defined in the same module, and the FOREIGN pragma associates <Text> with the current top-level module. This information is interpreted by the specific backend during compilation (see below). These pragmas were added in Agda 2.5.3.

3.11.2 Haskell FFI

Note: This section applies to the GHC Backend.

The FOREIGN pragma

The GHC backend interprets FOREIGN pragmas as inline Haskell code and can contain arbitrary code (including import statements) that will be added to the compiled module. For instance:

```
{-# FOREIGN GHC import Data.Maybe #-}
{-# FOREIGN GHC
    data FOO = FOO / Bar FOO
    countBars :: FOO -> Integer
    countBars Foo = 0
    countBars (Bar f) = 1 + countBars f
#-}
```


The COMPILE pragma

There are four forms of COMP ILE annotations recognized by the GHC backend

```
{-# COMPILE GHC <Name> = <HaskellCode> #-}
{-# COMPILE GHC <Name> = type <HaskellType> #-}
{-# COMPILE GHC <Name> = data <HaskellData> (<HsConI> | .. | <HsConN>) #-}
{-# COMPILE GHC <Name> as <HaskellName> #-}
```

The first three tells the compiler how to compile a given Agda definition and the last exposes an Agda definition under a particular Haskell name allowing Agda libraries to be used from Haskell.

Using Haskell Types from Agda

In order to use a Haskell function from Agda its type must be mapped to an Agda type. This mapping can be configured using the type and data forms of the COMP ILE pragma.

Opaque types

Opaque Haskell types are exposed to Agda by postulating an Agda type and associating it to the Haskell type using the type form of the COMP ILE pragma:

```
{-# FOREIGN GHC import qualified System.IO #-}
postulate FileHandle : Set
{-# COMPILE GHC FileHandle = type System.IO.Handle #-}
```

This tells the compiler that the Agda type FileHandle corresponds to the Haskell type System.IO.Handle and will enable functions using file handles to be used from Agda.

Data types

Non-opaque Haskell data types can be mapped to Agda datatypes using the data form of the COMP ILED pragma:

```
data Maybe (A : Set) : Set where
    nothing : Maybe A
    just : A }->\mathrm{ Maybe A
{-# COMPILE GHC Maybe = data Maybe (Nothing / Just) #-}
```

The compiler checks that the types of the Agda constructors match the types of the corresponding Haskell constructors and that no constructors have been left out (on either side).

Built-in Types

The GHC backend compiles certain Agda built-in types to special Haskell types. The mapping between Agda built-in types and Haskell types is as follows:

Agda Built-in	Haskell Type
NAT	Integer
INTEGER	Integer
STRING	Data.Text.Text
CHAR	Char
BOOL	Bool
FLOAT	Double

Warning: Haskell code manipulating Agda natural numbers as integers must take care to avoid negative values.

Warning: Agda FLOAT values have only one logical NaN value. At runtime, there might be multiple different NaN representations present. All such NaN values must be treated equal by FFI calls.

Using Haskell functions from Agda

Once a suitable mapping between Haskell types and Agda types has been set up, Haskell functions whose types map to Agda types can be exposed to Agda code with a COMP ILE pragma:

```
open import Agda.Builtin.IO
open import Agda.Builtin.String
open import Agda.Builtin.Unit
{-# FOREIGN GHC
    import qualified Data.Text.IO as Text
    import qualified System.IO as IO
#-}
postulate
    stdout : FileHandle
    hPutStrLn : FileHandle }->\mathrm{ String }->\mathrm{ IO T
{-# COMPILE GHC stdout = IO.stdout #-}
{-# COMPILE GHC hPutStrLn = Text.hPutStrLn #-}
```

The compiler checks that the type of the given Haskell code matches the type of the Agda function. Note that the COMP ILE pragma only affects the runtime behaviour-at type-checking time the functions are treated as postulates.

Warning: It is possible to give Haskell definitions to defined (non-postulate) Agda functions. In this case the Agda definition will be used at type-checking time and the Haskell definition at runtime. However, there are no checks to ensure that the Agda code and the Haskell code behave the same and discrepancies may lead to undefined behaviour.

This feature can be used to let you reason about code involving calls to Haskell functions under the assumption that you have a correct Agda model of the behaviour of the Haskell code.

Using Agda functions from Haskell

Since Agda 2.3.4 Agda functions can be exposed to Haskell code using the as form of the COMP ILE pragma:

```
module IdAgda where
    idAgda : }\forall{A: Set } -> A ->
    idAgda x = x
    {-# COMPILE GHC idAgda as idAgdaFromHs #-}
```

This tells the compiler that the Agda function idAgda should be compiled to a Haskell function called idAgdaFromHs. Without this pragma, functions are compiled to Haskell functions with unpredictable names and, as a result, cannot be invoked from Haskell. The type of idAgdaFromHs will be the translated type of idAgda.

The compiled and exported function idAgdaFromHs can then be imported and invoked from Haskell like this:

```
-- file UseIdAgda.hs
module UseIdAgda where
import MAlonzo.Code.IdAgda (idAgdaFromHs)
-- idAgdaFromHS :: () -> a -> a
idAgdaApplied :: a -> a
idAgdaApplied = idAgdaFromHs ()
```


Polymorphic functions

Agda is a monomorphic language, so polymorphic functions are modeled as functions taking types as arguments. These arguments will be present in the compiled code as well, so when calling polymorphic Haskell functions they have to be discarded explicitly. For instance,

```
postulate
    ioReturn : {A : Set } -> A }->\mathrm{ IO A
{-# COMPILE GHC ioReturn = \ _ x -> return x #-}
```

In this case compiled calls to ioReturn will still have A as an argument, so the compiled definition ignores its first argument and then calls the polymorphic Haskell return function.

Level-polymorphic types

Level-polymorphic types face a similar problem to polymorphic functions. Since Haskell does not have universe levels the Agda type will have more arguments than the corresponding Haskell type. This can be solved by defining a Haskell type synonym with the appropriate number of phantom arguments. For instance:

```
data Either {a b} (A : Set a) (B : Set b) : Set (a \sqcup b) where
    left : A }->\mathrm{ Either A B
    right : B }->\mathrm{ Either A B
{-# FOREIGN GHC type AgdaEither a b = Either #-}
{-# COMPILE GHC Either = data AgdaEither (Left / Right) #-}
```


Handling typeclass constraints

There is (currently) no way to map a Haskell type with type class constraints to an Agda type. This means that functions with class constraints cannot be used from Agda. However, this can be worked around by wrapping class constraints in Haskell data types, and providing Haskell functions using explicit dictionary passing.

For instance, suppose we have a simple GUI library in Haskell:

```
module GUILib where
    class Widget w
    setVisible :: Widget w => w -> Bool -> IO ()
    data Window
    instance Widget Window
    newWindow :: IO Window
```

To use this library from Agda we first define a Haskell type for widget dictionaries and map this to an Agda type Widget:

```
{-# FOREIGN GHC import GUILib #-}
{-# FOREIGN GHC data WidgetDict w = Widget w => WidgetDict #-}
postulate
    Widget : Set }->\mathrm{ Set
{-# COMPILE GHC Widget = type WidgetDict #-}
```

We can then expose setVisible as an Agda function taking a Widget instance argument:

```
postulate
    setVisible : {w : Set} {{_ : Widget w}} -> w -> Bool }->\mathrm{ IO T
{-# COMPILE GHC setVisible = \ _ WidgetDict -> setVisible #-}
```

Note that the Agda Widget argument corresponds to a WidgetDict argument on the Haskell side. When we match on the WidgetDict constructor in the Haskell code, the packed up dictionary will become available for the call to setVisible.
The window type and functions are mapped as expected and we also add an Agda instance packing up the Widget Window Haskell instance into a WidgetDict:

```
postulate
    Window : Set
    newWindow : IO Window
    instance WidgetWindow : Widget Window
{-# COMPILE GHC Window = type Window #-}
{-# COMPILE GHC newWindow = newWindow #-}
{-# COMPILE GHC WidgetWindow = WidgetDict #-}
```

We can then write code like this:

```
openWindow : IO Window
openWindow = newWindow }\quad>>=\lambda w ->
    setVisible w true >>= \lambda_}
    return w
```


3.11.3 JavaScript FFI

The JavaScript backend recognizes COMP ILE pragmas of the following form:

```
{-# COMPILE JS <Name> = <JSCode> #-}
```

where $<$ Name $>$ is a postulate, constructor, or data type. The code for a data type is used to compile pattern matching and should be a function taking a value of the data type and a table of functions (corresponding to case branches)
indexed by the constructor names. For instance, this is the compiled code for the List type, compiling lists to JavaScript arrays:

```
data List {a} (A : Set a) : Set a where
    [] : List A
    _::_ : (x : A) (xs : List A) -> List A
{-# COMPILE JS List = function(x,v) {
    if (x.length < 1) {
        return v["[]"]();
    } else {
        return v["_::_"](x[0], x.slice(1));
    }
    } #-}
{-# COMPILE JS [] = Array() #-}
{-# COMPILE JS _::_ = function (x) { return function(y) { return Array(x).concat(y); };ь
->} #-}
```


3.12 Function Definitions

3.12.1 Introduction

A function is defined by first declaring its type followed by a number of equations called clauses. Each clause consists of the function being defined applied to a number of patterns, followed by $=$ and a term called the right-hand side. For example:

```
not : Bool }->\mathrm{ Bool
not true = false
not false = true
```

Functions are allowed to call themselves recursively, for example:

```
twice : Nat }->\mathrm{ Nat
twice zero = zero
twice (suc n) = suc (suc (twice n))
```


3.12.2 General form

The general form for defining a function is

```
f: (x
f pl ... p pn = d
f q⿴囗 _ . . q}\mp@subsup{q}{n}{}=\textrm{e
```

where f is a new identifier, p_{i} and q_{i} are patterns of type A_{i}, and d and e are expressions.
The declaration above gives the identifier f the type $\left(\mathrm{x}_{1}: \mathrm{A}_{1}\right) \rightarrow \ldots \rightarrow\left(\mathrm{x}_{n}: \mathrm{A}_{n}\right) \rightarrow \mathrm{B}$ and f is defined by the defining equations. Patterns are matched from top to bottom, i.e., the first pattern that matches the actual parameters is the one that is used.

By default, Agda checks the following properties of a function definition:

- The patterns in the left-hand side of each clause should consist only of constructors and variables.
- No variable should occur more than once on the left-hand side of a single clause.
- The patterns of all clauses should together cover all possible inputs of the function, see Coverage Checking.
- The function should be terminating on all possible inputs, see Termination Checking.

3.12.3 Special patterns

In addition to constructors consisting of constructors and variables, Agda supports two special kinds of patterns: dot patterns and absurd patterns.

Dot patterns

A dot pattern (also called inaccessible pattern) can be used when the only type-correct value of the argument is determined by the patterns given for the other arguments. The syntax for a dot pattern is .t.
As an example, consider the datatype Square defined as follows

```
data Square : Nat }->\mathrm{ Set where
    sq : (m : Nat) }->\mathrm{ Square (m * m)
```

Suppose we want to define a function root : ($\mathrm{n}:$ Nat) \rightarrow Square $\mathrm{n} \rightarrow$ Nat that takes as its arguments a number n and a proof that it is a square, and returns the square root of that number. We can do so as follows:

```
root : (n : Nat) }->\mathrm{ Square n }->\mathrm{ Nat
root.(m * m) (sq m) = m
```

Notice that by matching on the argument of type Square n with the constructor $\mathrm{sq}:(\mathrm{m}: \mathrm{Nat}) \rightarrow$ Square ($m * m$), n is forced to be equal to $m * m$.

In general, when matching on an argument of type $D i_{1} \ldots i_{n}$ with a constructor $C:\left(x_{1}: A_{1}\right) \rightarrow$ $\ldots \rightarrow\left(x_{m}: A_{m}\right) \rightarrow D j_{1} \ldots j_{n}$, Agda will attempt to unify $i_{1} \ldots i_{n}$ with $j_{1} \ldots j_{n}$. When the unification algorithm instantiates a variable x with value t, the corresponding argument of the function can be replaced by a dot pattern .t. Using a dot pattern is optional, but can help readability. The following are also legal definitions of root:
Since Agda 2.4.2.4:

```
\mp@subsup{root }{1}{}:(n: Nat) }->\mathrm{ Square n }->\mathrm{ Nat
\mp@subsup{\operatorname{root}}{1}{}-(sq m)=m
```

Since Agda 2.5.2:

```
\mp@subsup{root}{2 : (n : Nat) }{\mathrm{ ( Square n }}\textrm{n}\mathrm{ S Nat}
\mp@subsup{root}{2 n (sq m) = m}{m}|
```

In the case of $\operatorname{root}_{2}, n$ evaluates to $m * m$ in the body of the function and is thus equivalent to

```
\mp@subsup{root 3 : (n : Nat) }{\mathrm{ ( Square n }}{\textrm{n}}->\mathrm{ S Nat}
\mp@subsup{root 3 - (sq m) = let n = m * m in m}{m}{m}
```


Absurd patterns

Absurd patterns can be used when none of the constructors for a particular argument would be valid. The syntax for an absurd pattern is ().

As an example, if we have a datatype Even defined as follows

```
data Even : Nat }->\mathrm{ Set where
    even-zero : Even zero
    even-plus2 : {n : Nat} }->\mathrm{ Even n }->\mathrm{ Even (suc (suc n))
```

then we can define a function one-not-even : Even $1 \rightarrow \perp$ by using an absurd pattern:

```
one-not-even : Even 1 }
one-not-even ()
```

Note that if the left-hand side of a clause contains an absurd pattern, its right-hand side must be omitted.
In general, when matching on an argument of type $D i_{1} \ldots i_{n}$ with an absurd pattern, Agda will attempt for each constructor $c:\left(x_{1}: A_{1}\right) \rightarrow \ldots \rightarrow\left(x_{m}: A_{m}\right) \rightarrow D j_{1} \ldots j_{n}$ of the datatype D to unify $i_{1} \ldots i_{n}$ with $j_{1} \ldots j_{n}$. The absurd pattern will only be accepted if all of these unifications end in a conflict.

As-patterns

As-patterns (or @-patterns) can be used to name a pattern. The name has the same scope as normal pattern variables (i.e. the right-hand side, where clause, and dot patterns). The name reduces to the value of the named pattern. For example:

```
module _ {A : Set} (_<_ : A }->\textrm{A}->\textrm{Bool})\mathrm{ where
    merge : List A }->\mathrm{ List A }->\mathrm{ List A
    merge xs [] = xs
    merge [] ys = ys
    merge xs@(x :: xS1) ys@(y :: ys ) =
        if x < y then x :: merge xsi ys
                else y :: merge xs ysi
```

As-patterns are properly supported since Agda 2.5.2.

3.12.4 Case trees

Internally, Agda represents function definitions as case trees. For example, a function definition

```
max : Nat }->\mathrm{ Nat }->\mathrm{ Nat
max zero n = n
max m zero = m
max (suc m) (suc n) = suc (max m n)
```

will be represented internally as a case tree that looks like this:

```
max m n = case m of
    zero }->\textrm{n
    suc m' }->\mathrm{ case n of
        zero }->\mathrm{ suc m'
        suc n' }->\mathrm{ suc (max m' n')
```

Note that because Agda uses this representation of the function max, the clause max m zero $=\mathrm{m}$ does not hold definitionally (i.e. as a reduction rule). If you would try to prove that this equation holds, you would not be able to write refl:

```
data _三_ {A:Set } (x : A) : A }->\mathrm{ Set where
    refl : x \equiv x
-- Does not work!
lemma : (m : Nat) }->\mathrm{ max m zero 三 m
lemma = refl
```

Clauses which do not hold definitionally are usually (but not always) the result of writing clauses by hand instead of using Agda's case split tactic. These clauses are highlighted by Emacs.

The --exact-split flag causes Agda to raise an error whenever a clause in a definition by pattern matching cannot be made to hold definitionally. Specific clauses can be excluded from this check by means of the $\{-\#$ CATCHALL \#-\} pragma.

For instance, the above definition of max will be rejected when using the --exact-split flag because its second clause does not to hold definitionally.
When using the --exact-split flag, catch-all clauses have to be marked as such, for instance:

```
eq : Nat }->\mathrm{ Nat }->\mathrm{ Bool
eq zero zero = true
eq (suc m) (suc n) = eq m n
{-# CATCHALL #-}
eq _ _ = false
```

The --no-exact-split flag can be used to override a global--exact-split in a file, by adding a pragma \{-\# OPTIONS --no-exact-split \#-\}. This option is enabled by default.

3.13 Function Types

Function types are written (x : A) \rightarrow B, or in the case of non-dependent functions simply A \rightarrow B. For instance, the type of the addition function for natural numbers is:

```
Nat }->\mathrm{ Nat }->\mathrm{ Nat
```

and the type of the addition function for vectors is:

```
(A: Set) }->(\textrm{n}: Nat) ->(u:V:Vec A n) ->(v:Vec A n) -> Vec A n
```

where Set is the type of sets and Vec A n is the type of vectors with n elements of type A. Arrows between consecutive hypotheses of the form (x : A) may also be omitted, and ($\mathrm{x}: \mathrm{A}$) ($\mathrm{y}:$ A) may be shortened to (x y : A) :

```
(A : Set) (n : Nat)(u v : Vec A n) }->\mathrm{ Vec A n
```

Functions are constructed by lambda abstractions, which can be either typed or untyped. For instance, both expressions below have type (A : Set) \rightarrow A \rightarrow A (the second expression checks against other types as well):


```
example e}=\A x m x
```

You can also use the Unicode symbol λ (type "\lambda" or " $\backslash \mathrm{Gl}$ " in the Emacs Agda mode) instead of \backslash (type " " in the Emacs Agda mode).

The application of a function $f:(x: A) \rightarrow B$ to an argument $a: A$ is written f a and the type of this is $B[x:=a]$.

3.13.1 Notational conventions

Function types:

```
prop 1 : ((x : A ) (y : B ) -> C) is-the-same-as ((x : A ) }->(y: B) -> C)
```



```
prop}3\mathrm{ : (forall (x : A) }->\mathrm{ C) is-the-same-as ((x : A) }->\mathrm{ C)
prop}4\mp@code{(forall x 隹 ) is-the-same-as ((x : _ ) }->\mathrm{ ( C)
```


You can also use the Unicode symbol \forall (type "\all" in the Emacs Agda mode) instead of forall.
Functional abstraction:

```
(\x y }->\mathrm{ e) is-the-same-as }\quad(\x->(\y me)
```

Functional application:

```
(f a b) is-the-same-as ((f a) b)
```


3.14 Generalization of Declared Variables

- Overview
- Nested generalization
- Placement of generalized bindings
- Instance and irrelevant variables
- Importing and exporting variables
- Interaction
- Modalities

3.14.1 Overview

Since version 2.6.0, Agda supports implicit generalization over variables in types. Variables to be generalized over must be declared with their types in a variable block. For example:

```
variable
    l : Level
    n m : Nat
data Vec (A : Set l) : Nat }->\mathrm{ Set l where
    [] : Vec A O
    _:_ : A }->\mathrm{ Vec A n }->\mathrm{ Vec A (suc n)
```

Here the parameter \mathcal{l} and the n in the type of _::_ are not bound explicitly, but since they are declared as generalizable variables, bindings for them are inserted automatically. The level l is added as a parameter to the datatype and n is added as an argument to \qquad The resulting declaration is

```
data Vec {l : Level} (A : Set l) : Nat }->\mathrm{ Set l where
    [] : Vec A O
    _:_:{n:Nat} }->\textrm{A}->\operatorname{Vec A n }->\mathrm{ Vec A (suc n)
```

See Placement of generalized bindings below for more details on where bindings are inserted.
Variables are generalized in top-level type signatures, module telescopes, and record and datatype parameter telescopes.

Issues related to this feature are marked with generalize in the issue tracker.

3.14.2 Nested generalization

When generalizing a variable, any generalizable variables in its type are also generalized over. For instance, you can declare A to be a type at some level $\{$ as

```
variable
    A : Set l
```

Now if A is mentioned in a type, the level l will also be generalized over:

```
-- id : {A.{ : Level} {A : Set {} }->A->
id : A }->\mathrm{ A
id x = x
```

The nesting can be arbitrarily deep, so

```
variable
    x : A
refl' : x \equiv x
refl' = refl
```

expands to

```
refl' : {x.A.l : Level} {x.A : Set x.A.l} {x : x.A} }->\textrm{x}\equiv\textrm{x}=\textrm{x
```

See Naming of nested variables below for how the names are chosen.
Nested variables are not necessarily generalized over. In this example, if the universe level of A is fixed there is nothing to generalize:

```
postulate
    -- pure : {A : Set} {F: Set }->\mathrm{ Set } }->A->F
    pure : {F : Set }->\mathrm{ Set } }->\textrm{A}->\textrm{F}
```

See Generalization over unsolved metavariables for more details.

Note: Nested generalized variables are local to each variable, so if you declare

```
variable
    B : Set l
```

then A and B can still be generalized at different levels. For instance,

```
--_{_: {A.{ : Level} {A : Set A.l} {B.{ : Level} {B:Set B.l} }->\mathrm{ { (A }->B)->A->
_$_: (A -> B) }->\textrm{A}->\textrm{B
f $ x = f x
```


Generalization over unsolved metavariables

Generalization over nested variables is implemented by creating a metavariable for each nested variable and generalize over any such meta that is still unsolved after type checking. This is what makes the pure example from the previous section work: the metavariable created for \mathscr{l} is solved to level 0 and is thus not generalized over.

A typical case where this happens is when you have dependencies between different nested variables. For instance:

```
postulate
    Con : Set
variable
    \Gamma\Delta\Theta:Con
postulate
    Sub : Con }->\mathrm{ Con }->\mathrm{ Set
    idS : Sub \Gamma \Gamma
    _O_ : Sub }\Gamma\Delta->\mathrm{ Sub }\Delta\Theta->\mathrm{ Sub }\Gamma
variable
    \delta\sigma\gamma : Sub }\Gamma
postulate
    assoc : \delta\circ (\sigma\circ\gamma) \equiv( 
```

In the type of assoc each substitution gets two nested variable metas for their contexts, but the type of _ ${ }^{\circ}$ _ requires the contexts of its arguments to match up, so some of these metavariables are solved. The resulting type is

```
assoc :{\delta.\Gamma \delta.\Delta : Con} {\delta : Sub \delta.\Gamma \delta.\Delta} {\sigma.\Delta : Con} {\sigma: Sub \delta.\Delta \sigma.\Delta }
    {\gamma.\Delta : Con} {\gamma: Sub \sigma.\Delta \gamma.\Delta} -> (\delta\circ (\sigma\circ\gamma)) \equiv((\delta\circ\sigma)\circ\gamma)
```

where we can see from the names that $\sigma . \Gamma$ was unified with $\delta . \Delta$ and $\gamma . \Gamma$ with $\sigma . \Delta$. In general, when unifying two metavariables the "youngest" one is eliminated which is why $\delta . \Delta$ and $\sigma . \Delta$ are the ones that remain in the type.
If a metavariable for a nested generalizable variable is partially solved, the left-over metas are generalized over. For instance,

```
variable
    xs : Vec A n
head : Vec A (suc n) }->\textrm{A
head (x :: _) = x
-- lemma : {xS.n.1 : Nat} {xS : Vec Nat (Suc xS.n.1)} }->\mathrm{ head xS 三 1 }->\mathrm{ (0 < sum xS)
\hookrightarrow true
lemma : head xs \equiv 1 (0< sum xs ) \equiv true
```

In the type of lemma a metavariable is created for the length of $x s$, which the application head $x s$ refines to suc _n, for some new metavariable _n. Since there are no further constraints on _n, it's generalized over, creating the type given in the comment. See Naming of nested variables below for how the name xs.n. 1 is chosen.

Note: Only metavariables originating from nested variables are generalized over. An exception to this is in variable blocks where all unsolved metas are turned into nested variables. This means writing

```
variable
    A : Set _
```

is equivalent to $A: S e t \quad$ up to naming of the nested variable (see below).

Naming of nested variables

The general naming scheme for nested generalized variables is parentVar. nestedVar. So, in the case of the identity function id : A \rightarrow A expanding to

```
id: {A.l : Level} {A : Set {} }->\textrm{A}->\textrm{A
```

the name of the level variable is A. \mathcal{l} since the name of the nested variable is \mathscr{C} and its parent is the named variable A. For multiple levels of nesting the parent can be another nested variable as in the refl ${ }^{\prime}$ case above

```
refl': {x.A.l : Level} {x.A : Set x.A.l} {x : x.A} }->\textrm{x
```

If a nested generalizable variable is solved with a term containing further metas, these are generalized over as explained in the lemma example above. The names of the new variables are of the form parentName. i where parentName is the name of the solved variable and i numbers the metas, starting from 1 , in the order they appear in the solution.
If a variable comes from a free unsolved metavariable in a variable block (see this note), its name is chosen as follows:

- If it is a labelled argument to a function, the label is used as the name,
- otherwise the name is its left-to-right index (starting at 1) in the list of unnamed variables in the type.

It is then given a hierarchical name based on the named variable whose type it occurs in. For example,

```
postulate
    V : (A : Set) }->\mathrm{ Nat }->\mathrm{ Set
    P : V A n -> Set
variable
    v : v _ _
postulate
    thm : P v
```

Here there are two unnamed variables in the type of v , namely the two arguments to v . The first argument has the label A in the definition of v , so this variable gets the name v . A. The second argument has no label and thus gets the name v .2 since it is the second unnamed variable in the type of v .

If the variable comes from a partially instantiated nested variable the name of the metavariable is used unqualified.

Note: Currently it is not allowed to use hierarchical names when giving parameters to functions, see Issue \#3208.

3.14.3 Placement of generalized bindings

The following rules are used to place generalized variables:

- Generalized variables are placed at the front of the type signature or telescope.
- Type signatures appearing inside other type signatures, for instance in let bindings or dependent function arguments are not generalized. Instead any generalizable variables in such types are generalized over in the parent signature.
- Variables mentioned eariler are placed before variables mentioned later, where nested variables count as being mentioned together with their parent.

Note: This means that an implicitly quantified variable cannot depend on an explicitly quantified one. See Issue \#3352 for the feature request to lift this restriction.

Indexed datatypes

When generalizing datatype parameters and indicies a variable is turned into an index if it is only mentioned in indices and into a parameter otherwise. For instance,

```
data All (P : A }->\mathrm{ Set) : Vec A n }->\mathrm{ Set where
    [] : All P []
    _::_ : P x -> All P xs -> All P (x :: xs)
```

Here A is generalized as a parameter and n as an index. That is, the resulting signature is

```
data All {A : Set} (P : A }->\mathrm{ Set) : {n : Nat} }->\mathrm{ Vec A n }->\mathrm{ Set where
```


3.14.4 Instance and irrelevant variables

Generalized variables are introduced as implicit arguments by default, but this can be changed to instance arguments or irrelevant arguments by annotating the declaration of the variable:

```
record Eq (A : Set) : Set where
    field eq : A }->\mathrm{ A }->\mathrm{ Bool
variable
    {{EqA}} : Eq A -- generalized as an instance argument
    .ignore : A -- generalized as an irrelevant (implicit) argument
```

Variables are never generalized as explicit arguments.

3.14.5 Importing and exporting variables

Generalizable variables are treated in the same way as other declared symbols (functions, datatypes, etc) and use the same mechanisms for importing and exporting between modules. This means that unless marked private they are exported from a module.

3.14.6 Interaction

When developing types interactively, generalizable variables can be used in holes if they have already been generalized, but it is not possible to introduce new generalizations interactively. For instance,

```
works :(A }->\textrm{B})->\operatorname{Vec A n }->\operatorname{Vec B {!n!}
fails :(A }->\textrm{B})->\operatorname{Vec A {!n!} }->\mathrm{ Vec B {!n!}
```

In works you can give n in the hole, since a binding for n has been introduced by its occurrence in the argument vector. In fails on the other hand, there is no reference to n so neither hole can be filled interactively.

3.14.7 Modalities

One can give a modality when declaring a generalizable variable:

```
variable
    @0 ○ : Nat
```

In the generalization process generalizable variables get the modality that they are declared with, whereas other variables always get the default modality.

3.15 Guarded Cubical

Note: This is a stub.

Cubical Agda is extended with Nakano's later modality and guarded recursion based on Ticked Cubical Type Theory [2]. For its usage, see [1] or the example.

The implementation currently allows for something more general than in the above reference, in preparation for the ticks described in [3].

Given a type A in the primLockUniv universe we can form function types annotated with @tick (or its synonym @lock): (@tick $x: A$) ->B. Lambda abstraction at such a type introduces the variable in the context with a @tick annotation. Application $t u$ for $t:(@ t i c k x: A) \rightarrow B$ is restricted so that t is typable in the prefix of the context that does not include any @tick variables in u. The only exception to that restriction, at the moment, are variables of interval I, or IsOne _ type.

3.15.1 References

[1] Niccolò Veltri and Andrea Vezzosi. "Formalizing pi-calculus in guarded cubical Agda." In CPP'20. ACM, New York, NY, USA, 2020.
[2] Rasmus Ejlers Møgelberg and Niccolò Veltri. "Bisimulation as path type for guarded recursive types." In POPL'19, 2019.
[3] Magnus Baunsgaard Kristensen, Rasmus Ejlers Møgelberg, Andrea Vezzosi. "Greatest HITs: Higher inductive types in coinductive definitions via induction under clocks."

3.16 Implicit Arguments

It is possible to omit terms that the type checker can figure out for itself, replacing them by _. If the type checker cannot infer the value of an _ it will report an error. For instance, for the polymorphic identity function

```
id : (A : Set) }->\textrm{A}->\textrm{A
```

the first argument can be inferred from the type of the second argument, so we might write id _ zero for the application of the identity function to zero.
We can even write this function application without the first argument. In that case we declare an implicit function space:

```
id : {A : Set } }->A->
```

and then we can use the notation id zero.
Another example:

```
_==_ : {A : Set } }->\textrm{A}->\textrm{A}->\mathrm{ Set
subst: {A : Set} (C : A }->\mathrm{ Set) {x y : A} }->\textrm{S}=\textrm{x}==\textrm{y}->\textrm{C
```

Note how the first argument to $==$ _ is left implicit. Similarly, we may leave out the implicit arguments A, x, and y in an application of subst. To give an implicit argument explicitly, enclose it in curly braces. The following two expressions are equivalent:

```
x1 = subst C eq cx
x2 = subst {_} C {_} {_} eq cx
```

It is worth noting that implicit arguments are also inserted at the end of an application, if it is required by the type. For example, in the following, y 1 and y 2 are equivalent.

```
y1 : a == b C C a C C b
y1 = subst C
y2 : a == b }->\textrm{C}=\textrm{a}->\textrm{C
y2 = subst C {_} {_}
```

Implicit arguments are inserted eagerly in left-hand sides so y 3 and y 4 are equivalent. An exception is when no type signature is given, in which case no implicit argument insertion takes place. Thus in the definition of y 5 the only implicit is the A argument of subst.

```
y3 : {x y : A} -> x == y }->\textrm{C}x->\textrm{x
y3 = subst C
y4 : {x y : A} -> x == y f C x }->\textrm{C}
y4 {x} {y} = subst C {_} {_}
y5 = subst C
```

It is also possible to write lambda abstractions with implicit arguments. For example, given id : (A : Set) \rightarrow $A \rightarrow A$, we can define the identity function with implicit type argument as

```
id'}=\lambda{A}->id
```

Implicit arguments can also be referred to by name, so if we want to give the expression e explicitly for y without giving a value for x we can write

```
subst C {y=e} eq cx
```

In rare circumstances it can be useful to separate the name used to give an argument by name from the name of the bound variable, for instance if the desired name shadows an existing name. To do this you write

```
id
id}\mp@subsup{|}{2}{}\textrm{x}=\textrm{x
use-id}2\mp@code{: (Y : Set) }->\textrm{Y}->\textrm{Y
use-id2 Y = id_ {A = Y} -- but the label is A
```

Labeled bindings must appear by themselves when typed, so the type set needs to be repeated in this example:

```
const : {A = X : Set } {B=Y: Set } }->\textrm{S}=\textrm{A}->\textrm{B}->\textrm{A
const x y = x
```

When constructing implicit function spaces the implicit argument can be omitted, so both expressions below are valid expressions of type $\{\mathrm{A}:$ Set $\} \rightarrow \mathrm{A} \rightarrow \mathrm{A}:$

```
z1 = \lambda {A} x }->\textrm{x
z2 = \lambda x }->\textrm{x
```

The \forall (or forall) syntax for function types also has implicit variants:

```
(1):(\forall{x:A} }->\textrm{B})\mathrm{ is-the-same-as ({x:A 
(2):(}\forall{x}->B) is-the-same-as ({x:_} 隹 ( ) ( )
(3):(\forall{x y } B B ) is-the-same-as }(\forall{x}->\forall{y}->B
```

In very special situations it makes sense to declare unnamed hidden arguments $\{A\} \rightarrow B$. In the following example, the hidden argument to scons of type zero \leq zero can be solved by η-expansion, since this type reduces to \top.

```
data }\perp\mathrm{ : Set where
_\leq_ : Nat }->\mathrm{ Nat }->\mathrm{ Set
zero s _ = \top
suc m\leqzero = \perp
suc m\leq suc n =m\leqn
data SList (bound : Nat) : Set where
    [] : SList bound
    scons : (head : Nat) }->\mathrm{ {head }\leq\mathrm{ bound} }->\mathrm{ (tail : SList head) }->\mathrm{ SList bound
example : SList zero
example = scons zero []
```

There are no restrictions on when a function space can be implicit. Internally, explicit and implicit function spaces are treated in the same way. This means that there are no guarantees that implicit arguments will be solved. When there are unsolved implicit arguments the type checker will give an error message indicating which application contains the unsolved arguments. The reason for this liberal approach to implicit arguments is that limiting the use of implicit argument to the cases where we guarantee that they are solved rules out many useful cases in practice.

3.16.1 Tactic arguments

You can declare tactics to be used to solve a particular implicit argument using the @ (tactic t) attribute, where t : Term \rightarrow TC T. For instance:

```
clever-search : Term }->\mathrm{ TC }
clever-search hole = unify hole (lit (nat 17))
the-best-number : {@(tactic clever-search) n : Nat} }->\mathrm{ Nat
```

```
the-best-number {n} = n
check : the-best-number \equiv17
check = refl
```

The tactic can be an arbitrary term of the right type and may depend on previous arguments to the function:

```
default : {A : Set } -> A }->\mathrm{ Term }->\mathrm{ TC 丁
default x hole = bindTC (quoteTC x) (unify hole)
search : (depth : Nat) }->\mathrm{ Term }->\mathrm{ TC 丁
example : {@(tactic default 10) depth : Nat}
    {@(tactic search depth) proof : Proof} }
    Goal
```


3.16.2 Metavariables

3.16.3 Unification

3.17 Instance Arguments

- Usage
- Defining type classes
- Declaring instances
- Restricting instance search
- Examples
- Instance resolution

Instance arguments are a special kind of implicit arguments that get solved by a special instance resolution algorithm, rather than by the unification algorithm used for normal implicit arguments. Instance arguments are the Agda equivalent of Haskell type class constraints and can be used for many of the same purposes.

An instance argument will be resolved if its type is a named type (i.e. a data type or record type) or a variable type (i.e. a previously bound variable of type Set l), and a unique instance of the required type can be built from declared instances and the current context.

3.17.1 Usage

Instance arguments are enclosed in double curly braces $\{\}\}$, e.g. $\{\{x: T\}\}$. Alternatively they can be enclosed, with proper spacing, e.g. PDF TODO x : T PDF TODO, in the unicode braces PDF TODO PDF TODO ($\mathrm{U}+2983$ and $\mathrm{U}+2984$, which can be typed as $\backslash\{\{$ and $\backslash\}\}$ in the Emacs mode).

For instance, given a function $=={ }_{-}$

```
_==_: {A : Set } {{eqA : Eq A } } }->\textrm{A}->\textrm{A}->\textrm{A}->\textrm{BOOl
```

for some suitable type Eq, you might define

```
elem : {A : Set} {{eqA : Eq A }} }->\textrm{A}->\mathrm{ List A }->\mathrm{ Bool
elem x (y :: xs) = x == y || elem x xs
elem x [] = false
```

Here the instance argument to _==_ is solved by the corresponding argument to elem. Just like ordinary implicit arguments, instance arguments can be given explicitly. The above definition is equivalent to

```
elem: {A : Set} {{eqA : Eq A}} }->\textrm{A}->\mathrm{ List A }->\mathrm{ Bool
elem {{eqA}} x (y :: xs ) =_=_=_ {{eqA}} x y || elem {{eqA}} x xs
elem x [] = false
```

A very useful function that exploits this is the function it which lets you apply instance resolution to solve an arbitrary goal:

```
it: : {a} {A: Set a} }->{{A}}->
it {{x}} = x
```

As the last example shows, the name of the instance argument can be omitted in the type signature:

```
_==_ : {A : Set } -> {{EqA } } }->\textrm{A}->\textrm{A}->\textrm{A}->\textrm{BOOL
```


Defining type classes

The type of an instance argument should have the form $\{\Gamma\} \rightarrow C$ vs, where C is a postulated name, a bound variable, or the name of a data or record type, and $\{\Gamma\}$ denotes an arbitrary number of implicit or instance arguments (see Dependent instances below for an example where $\{\Gamma\}$ is non-empty).
Instances with explicit arguments are also accepted but will not be considered as instances because the value of the explicit arguments cannot be derived automatically. Having such an instance has no effect and thus raises a warning.

Instance arguments whose types end in any other type are currently also accepted but cannot be resolved by instance search, so they must be given by hand. For this reason it is not recommended to use such instance arguments. Doing so will also raise a warning.

Other than that there are no requirements on the type of an instance argument. In particular, there is no special declaration to say that a type is a "type class". Instead, Haskell-style type classes are usually defined as record types. For instance,

```
record Monoid {a} (A : Set a) : Set a where
    field
        mempty : A
        _<>_ : A }->\textrm{A}->\textrm{A
```

In order to make the fields of the record available as functions taking instance arguments you can use the special module application

```
open Monoid {{...}} public
```

This will bring into scope

```
mempty : }\forall{{a}{A:Set a} -> {{Monoid A}} -> A
_<>_ : \forall {a} {A : Set a} }->{{\mathrm{ Monoid A }} }->\textrm{A}->\textrm{A}->\textrm{A
```

Superclass dependencies can be implemented using Instance fields.
See Module application and Record modules for details about how the module application is desugared. If defined by hand, mempty would be

```
mempty : \forall {a} {A : Set a} }->{{\mathrm{ Monoid A } } }->\textrm{A
mempty {{mon}} = Monoid.mempty mon
```

Although record types are a natural fit for Haskell-style type classes, you can use instance arguments with data types to good effect. See the Examples below.

Declaring instances

As seen above, instance arguments in the context are available when solving instance arguments, but you also need to be able to define top-level instances for concrete types. This is done using the instance keyword, which starts a block in which each definition is marked as an instance available for instance resolution. For example, an instance Monoid (List A) can be defined as

```
instance
    ListMonoid : }\forall\mathrm{ {a} {A : Set a} }->\mathrm{ Monoid (List A)
    ListMonoid = record { mempty = []; _<>_ = _+++_ }
```

Or equivalently, using copatterns:

```
instance
    ListMonoid : }\forall\mathrm{ {a} {A : Set a} }->\mathrm{ Monoid (List A)
    mempty {{ListMonoid}} = []
    _<>_ {{ListMonoid}} xs ys = xs ++ ys
```

Top-level instances must target a named type (Monoid in this case), and cannot be declared for types in the context.
You can define local instances in let-expressions in the same way as a top-level instance. For example:

```
mconcat : }\forall{{a} {A : Set a} -> {{Monoid A}} -> List A -> A
mconcat [] = mempty
mconcat (x :: xs) = x <> mconcat xs
sum : List Nat }->\mathrm{ Nat
sum xs =
    let instance
            NatMonoid : Monoid Nat
            NatMonoid = record { mempty = 0; _<>_ = _+__ }
    in mconcat xs
```

Instances can have instance arguments themselves, which will be filled in recursively during instance resolution. For instance,

```
record Eq {a} (A : Set a) : Set a where
    field
        _==_ : A }->\textrm{A}->\textrm{BOOl
open Eq {{...}} public
instance
    eqList : }\forall\mathrm{ {a} {A : Set a} }->\mathrm{ { {{Eq A } } }->\mathrm{ Eq (List A)
    _==_ {{eqList}} [] [] = true
    _==_ {{eqList}} (x :: xs) (y :: ys) = x == y && xs == ys
    _==_ {{eqList}} _ _ = false
    eqNat : Eq Nat
    _==_ {{eqNat } } = natEquals
```

```
ex : Bool
```

ex $=(1$:: 2 :: 3 :: []) == (1 :: 2 :: []) -- false

Note the two calls to _==_ in the right-hand side of the second clause. The first uses the Eq A instance and the second uses a recursive call to eqList. In the example ex, instance resolution, needing a value of type Eq (List Nat), will try to use the eqList instance and find that it needs an instance argument of type Eq Nat, it will then solve that with eqNat and return the solution eqList $\{$ \{eqNat \} \}.

Note: At the moment there is no termination check on instances, so it is possible to construct non-sensical instances like loop : \forall \{a\} \{A : Set a\} $\rightarrow\{\{$ Eq A \} \} \rightarrow Eq A. To prevent looping in cases like this, the search depth of instance search is limited, and once the maximum depth is reached, a type error will be thrown. You can set the maximum depth using the --instance-search-depth flag.

Restricting instance search

To restrict an instance to the current module, you can mark it as private. For instance,

```
record Default (A : Set) : Set where
    field default : A
open Default {{...}} public
module M where
    private
        instance
            defaultNat : Default Nat
            defaultNat .default = 6
    test }\mp@subsup{\mp@code{1}}{1}{: Nat
    test 
    _ : test }\mp@subsup{}{1}{}\equiv
    _ = refl
open M
instance
    defaultNat : Default Nat
    defaultNat .default = 42
test2 : Nat
test2 = default
_ : test 
    = refl
```


Constructor instances

Although instance arguments are most commonly used for record types, mimicking Haskell-style type classes, they can also be used with data types. In this case you often want the constructors to be instances, which is achieved by
declaring them inside an instance block. Constructors can only be declared as instances if all their arguments are implicit or instance arguments. See Instance resolution below for the details.
A simple example of a constructor that can be made an instance is the reflexivity constructor of the equality type:

```
data_\equiv_ {a} {A : Set a} (x : A) : A }->\mathrm{ Set a where
    instance refl : x \equiv x
```

This allows trivial equality proofs to be inferred by instance resolution, which can make working with functions that have preconditions less of a burden. As an example, here is how one could use this to define a function that takes a natural number and gives back a Fin n (the type of naturals smaller than n):

```
data Fin : Nat }->\mathrm{ Set where
    zero: }\forall{n}->Fin (suc n
    suc : }\forall{n}->Fin n -> Fin (suc n
mkFin: }\forall{n}(m:Nat) -> {{suc m - n 三 0}} -> Fin n
mkFin {zero} m {{}}
mkFin {suc n} zero = zero
mkFin {suc n} (suc m) = suc (mkFin m)
five : Fin 6
five = mkFin 5 -- OK
```

In the first clause of mkFin we use an absurd pattern to discharge the impossible assumption suc $m \equiv 0$. See the next section for another example of constructor instances.

Record fields can also be declared instances, with the effect that the corresponding projection function is considered a top-level instance.

Overlapping instances

By default, Agda does not allow overlapping instances. Two instances are defined to overlap if they could both solve the instance goal when given appropriate solutions for their recursive (instance) arguments.

For example, in code below, the instances zero and suc overlap for the goal ex x_{1}, because either one of them can be used to solve the goal when given appropriate arguments, hence instance search fails.

```
infix 4 _\in_
data _\in_ {A : Set } (x : A) : List A }->\mathrm{ Set where
    instance
        zero : }\forall{xs}->x\inx :: xs
        suc : }\forall{yxs}->{{x\inxs}}->x\iny::x
ex 
ex
```

Overlapping instances can be enabled via the --overlapping-instances flag. Be aware that enabling this flag might lead to an exponential slowdown in instance resolution and possibly (apparent) looping behaviour.

Examples

Dependent instances

Consider a variant on the Eq class where the equality function produces a proof in the case the arguments are equal:

```
record Eq {a} (A : Set a) : Set a where
    field
        _==_ : (x y : A ) }->\mathrm{ Maybe (x 三 y)
open Eq {{...}} public
```

A simple boolean-valued equality function is problematic for types with dependencies, like the Σ-type

```
data }\Sigma{a|b}(A:Set a) (B : A T Set b) : Set (a \sqcup b) where
```

 \(-^{\prime}-:(\mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B} x \rightarrow \Sigma \mathrm{~A} B\)
 since given two pairs x, y and $\mathrm{x}_{1}, \quad \mathrm{y}_{1}$, the types of the second components y and y_{1} can be completely different and not admit an equality test. Only when x and x_{1} are really equal can we hope to compare y and y_{1}. Having the equality function return a proof means that we are guaranteed that when x and x_{1} compare equal, they really are equal, and comparing y and y_{1} makes sense.

An Eq instance for Σ can be defined as follows:

```
instance
```



```
\hookrightarrow(\Sigma A B)
    _==_ {{eq\Sigma}} (x , y) (x (x , y y ) with x == x x 
    _==_ {{eq\sum}} (x,y) ( }\mp@subsup{\textrm{x}}{1}{},\mp@subsup{y}{1}{})\quad| nothing = nothin
    _==_ {{eq\sum}} (x , y) (.x , y1) | just refl with y == y y 
    _==_ {{eq\Sigma}} (x , y) (.x , y ) | just refl | nothing = nothing
    _==_ {{eq\Sigma}} (x , y) (.x , .y) | just refl | just refl = just refl
```

Note that the instance argument for B states that there should be an Eq instance for $B x$, for any x : A. The argument x must be implicit, indicating that it needs to be inferred by unification whenever the B instance is used. See Instance resolution below for more details.

3.17.2 Instance resolution

Given a goal that should be solved using instance resolution we proceed in the following four stages:
Verify the goal First we check that the goal type has the right shape to be solved by instance resolution. It should be of the form $\{\Gamma\} \rightarrow C$ vs, where the target type C is a variable from the context or the name of a data or record type, and $\{\Gamma\}$ denotes a telescope of implicit or instance arguments. If this is not the case instance resolution fails with an error message ${ }^{1}$.

Find candidates In the second stage we compute a set of candidates. Let-bound variables and top-level definitions in scope are candidates if they are defined in an instance block. Lambda-bound variables, i.e. variables bound in lambdas, function types, left-hand sides, or module parameters, are candidates if they are bound as instance arguments using $\{\}\}$. Only candidates of type $\{\Delta\} \rightarrow C$ us, where C is the target type computed in the previous stage and $\{\Delta\}$ only contains implicit or instance arguments, are considered.
Check the candidates We attempt to use each candidate in turn to build an instance of the goal type $\{\Gamma\} \rightarrow C$ vs. First we extend the current context by $\{\Gamma\}$. Then, given a candidate $c:\{\Delta\} \rightarrow$ A we generate fresh metavariables $\alpha \mathrm{s}: \quad\{\Delta\}$ for the arguments of c , with ordinary metavariables for implicit arguments, and instance metavariables, solved by a recursive call to instance resolution, for instance arguments.
Next we unify A $[\Delta:=\alpha s]$ with C vs and apply instance resolution to the instance metavariables in α s. Both unification and instance resolution have three possible outcomes: yes, no, or maybe. In case we get a no answer from any of them, the current candidate is discarded, otherwise we return the potential solution $\lambda\{\Gamma\}$ $\rightarrow \mathrm{c} \alpha \mathrm{s}$.

[^1]Compute the result From the previous stage we get a list of potential solutions. If the list is empty we fail with an error saying that no instance for C vs could be found (no). If there is a single solution we use it to solve the goal (yes), and if there are multiple solutions we check if they are all equal. If they are, we solve the goal with one of them (yes), but if they are not, we postpone instance resolution (maybe), hoping that some of the maybes will turn into nos once we know more about the involved metavariables.

If there are left-over instance problems at the end of type checking, the corresponding metavariables are printed in the Emacs status buffer together with their types and source location. The candidates that gave rise to potential solutions can be printed with the show constraints command ($\mathrm{C}-\mathrm{C} \quad \mathrm{C}-=$).

3.18 Irrelevance

Since version 2.2.8 Agda supports irrelevancy annotations. The general rule is that anything prepended by a dot (.) is marked irrelevant, which means that it will only be typechecked but never evaluated.

Note: This section is about compile-time irrelevance. See Run-time Irrelevance for the section on run-time irrelevance.

The more recent Prop serves a similar purpose and can be used to simulate irrelevance.

3.18.1 Motivating example

One intended use case of irrelevance is data structures with embedded proofs, like sorted lists.

```
data___ : Nat }->\mathrm{ Nat }->\mathrm{ Set where
    zero\leq : {n : Nat} }->\mathrm{ zero }\leq\textrm{n
    suc\leqsuc : {m n : Nat} }->\textrm{m}\leq\textrm{n}->\mathrm{ suc m }\leq\mathrm{ suc n
postulate
    p
    p}2:0\leq
module No-Irrelevance where
    data SList (bound : Nat) : Set where
        [] : SList bound
        scons : (head : Nat)
            (head \leq bound)
            (tail : SList head)
            SList bound
```

Usually, when we define datatypes with embedded proofs we are forced to reason about the values of these proofs. For example, suppose we have two lists l_{1} and l_{2} with the same elements but different proofs:

```
l_ : SList 1
l}\mp@subsup{l}{1}{}=\mathrm{ scons 0 p1 []
l}\mp@subsup{l}{2}{: SList 1
l}\mp@subsup{l}{2}{\prime}=\mathrm{ scons 0 p []
```

Now suppose we want to prove that l_{1} and l_{2} are equal:

```
l}\mp@subsup{l}{1}{}\mp@subsup{|}{2}{2}:\mp@subsup{l}{1}{}\equiv\mp@subsup{l}{2}{
l
```

It's not so easy! Agda gives us an error:

```
p
when checking that the expression refl has type l l }\equiv\mp@subsup{l}{1}{
```

We can't show that $l_{1} \equiv l_{2}$ by refl when p_{1} and p_{2} are relevant. Instead, we need to reason about proofs of $0 \leq$ 1.

```
postulate
    proof-equality : p p }\equiv\mp@subsup{\textrm{p}}{2}{
```

Now we can prove $l_{1} \equiv l_{2}$ by rewriting with this equality:

```
l}=\mp@subsup{l}{2}{}:\mp@subsup{l}{1}{}\equiv\mp@subsup{l}{2}{
l}\mp@subsup{l}{1}{}\mp@subsup{|}{2}{}\mathrm{ rewrite proof-equality = refl
```

Reasoning about equality of proofs becomes annoying quickly. We would like to avoid this kind of reasoning about proofs here - in this case we only care that a proof of head \leq bound exists, i.e. any proof suffices. We can use irrelevance annotations to tell Agda we don't care about the values of the proofs:

```
data SList (bound : Nat) : Set where
    [] : SList bound
    scons : (head : Nat)
    ->.(head \leq bound) -- note the dot!
    (tail : SList head)
    SList bound
```

The effect of the irrelevant type in the signature of scons is that scons's second argument is never inspected after Agda has ensured that it has the right type. The type-checker ignores irrelevant arguments when checking equality, so two lists can be equal even if they contain different proofs:

```
l
l
l2 : SList 1
l}\mp@subsup{l}{2}{= scons 0 p []
l}\mp@subsup{l}{1}{}\mp@subsup{|}{2}{2}:\mp@subsup{l}{1}{}\equiv\mp@subsup{l}{2}{
l
```


3.18.2 Irrelevant function types

For starters, consider irrelevant non-dependent function types:

```
f : A }->\textrm{B
```

This type implies that f does not depend computationally on its argument.

What can be done to irrelevant arguments

Example 1. We can prove that two applications of an unknown irrelevant function to two different arguments are equal.

```
-- an unknown function that does not use its second argument
postulate
    f : {A B : Set} -> A >> . B -> A
-- the second argument is irrelevant for equality
proofIrr: {A:Set}{x y z : A} -> f x y \equivf x z
proofIrr = refl
```

Example 2. We can use irrelevant arguments as arguments to other irrelevant functions.

```
id : {A B : Set} -> (.A -> B) -> .A }->\mathrm{ ( B
id g x = g x
```

Example 3. We can match on an irrelevant argument of an empty type with an absurd pattern ().

```
data }\perp:\mathrm{ Set where
zero-not-one : . (0 三 1) }
zero-not-one ()
```


What can't be done to irrelevant arguments

Example 1. You can't use an irrelevant value in a non-irrelevant context.

```
bad-plus : Nat }->\mathrm{ .Nat }->\mathrm{ Nat
bad-plus n m = m + n
```

```
Variable m is declared irrelevant, so it cannot be used here
when checking that the expression m has type Nat
```

Example 2. You can't declare the function's return type as irrelevant.

```
bad : Nat }->\mathrm{ .Nat
bad n = 1
```

```
Invalid dotted expression
when checking that the expression .Nat has type Set _47
```

Example 3. You can't pattern match on an irrelevant value.

```
badMatching : Nat }->\mathrm{ .Nat }->\mathrm{ Nat
badMatching n zero = n
badMatching n (suc m) = n
```

```
Cannot pattern match against irrelevant argument of type Nat
when checking that the pattern zero has type Nat
```

Example 4. We also can't match on an irrelevant record (see Record Types).

```
record \Sigma (A : Set) (B : A }->\mathrm{ Set) : Set where
    constructor _'_
    field
        fst : A
        snd : B fst
```

(continued from previous page)

```
irrElim : {A: Set } {B : A }->\mathrm{ Set } }->\mathrm{ . ( }\Sigma\textrm{A}A\textrm{B})->
irrElim (a , b) = ?
```

```
Cannot pattern match against irrelevant argument of type \Sigma A B
when checking that the pattern a , b has type \Sigma A B
```

If this were allowed, b would have type $B a$ but this type is not even well-formed because a is irrelevant!

3.18.3 Irrelevant declarations

Postulates and functions can be marked as irrelevant by prefixing the name with a dot when the name is declared. Irrelevant definitions can only be used as arguments of functions of an irrelevant function type .A \rightarrow B.

Examples:

```
.irrFunction : Nat }->\mathrm{ Nat
irrFunction zero = zero
irrFunction (suc n) = suc (suc (irrFunction n))
postulate
    .assume-false : (A : Set) }->\textrm{A
```

An important example is the irrelevance axiom irrAx:

```
postulate
    .irrAx: }\forall{{}}{A:Set {} -> .A -> A
```

This axiom is not provable inside Agda, but it is often very useful when working with irrelevance. The irrelevance axiom is a form of non-constructive choice.

3.18.4 Irrelevant record fields

Record fields (see Record Types) can be marked as irrelevant by prefixing their name with a dot in the definition of the record type. Projections for irrelevant fields are only created if option--irrelevant-projections is supplied (since Agda > 2.5.4).

Example 1. A record type containing pairs of numbers satisfying certain properties.

```
record InterestingNumbers : Set where
    field
        n : Nat
        m : Nat
        .prop1 : n +m m n * m + 2
        .prop2 : suc m}\leq
```

Example 2. For any type A, we can define a 'squashed' version Squash A where all elements are equal.

```
record Squash (A : Set) : Set where
    constructor squash
    field
        .unsquash : A
open Squash
```

```
.example : }\forall{A}->\mathrm{ Squash A }->\textrm{A
example x = unsquash x
```

Example 3. We can define the subset of x : A satisfying P x with irrelevant membership certificates.

```
record Subset (A : Set) (P : A >> Set) : Set where
    constructor _#_
    field
        elem : A
        .certificate : P elem
.certificate : {A : Set}{P : A >> Set} -> (x : Subset A P) -> P (Subset.elem x)
certificate (a # p) = irrAx p
```

Example 4. Irrelevant projections are justified by the irrelevance axiom.

```
.unsquash' : }\forall{A}->\mathrm{ Squash A }->\textrm{A
unsquash' (squash x) = irrAx x
.irrAx' : }\forall{A}->.A A A 
irrAx' x = unsquash (squash x)
```

Like the irrelevance axiom, irrelevant projections cannot be reduced.

3.18.5 Dependent irrelevant function types

Just like non-dependent functions, we can also make dependent functions irrelevant. The basic syntax is as in the following examples:

```
f : . (x y : A) }->\mathrm{ B
f : . {x y z : A } }->\textrm{B
f : .(xs {ys zs} : A) }->\textrm{B
f : \forallx - y }->\textrm{B
f: \forall x . {y} {z} .V }->\textrm{V
f : . {{x : A } } }->\textrm{B
```

The declaration

```
f : .(x : A) }->\textrm{B}[\textrm{x}
f x = t[x]
```

requires that x is irrelevant both in $t[x]$ and in $B[x]$. This is possible if, for instance, $B[x]=C x$, with $C:$:A \rightarrow Set.

Dependent irrelevance allows us to define the eliminator for the Squash type:

```
elim-Squash : {A : Set} (P : Squash A }->\mathrm{ Set)
    (ih : . (a : A) }->\textrm{P}\mathrm{ (squash a)) }
    (a- : Squash A) }->\textrm{P}\mp@subsup{\textrm{a}}{}{-
elim-Squash P ih (squash a) = ih a
```

Note that this would not type-check with (ih : ($\mathrm{a}: \mathrm{A}) \rightarrow \mathrm{P}$ (squash a)).

3.18.6 Irrelevant instance arguments

Contrary to normal instance arguments, irrelevant instance arguments (see Instance Arguments) are not required to have a unique solution.

```
record T : Set where
    instance constructor tt
NonZero : Nat }->\mathrm{ Set
NonZero zero = L
NonZero (suc _) = \top
pred' : (n : Nat) . {{_ : NonZero n}} -> Nat
pred' zero {{}}
pred' (suc n) = n
find-nonzero : (n : Nat) {{x y : NonZero n}} -> Nat
find-nonzero n = pred' n
```


3.18.7 Subtyping of irrelevant function spaces

Normally, if $\mathrm{f}: \quad .(\mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B}$ then we have $\lambda \mathrm{x} \rightarrow \mathrm{f} \mathrm{x}: \quad(\mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B}$ but not $\mathrm{f}: \quad(\mathrm{x}:$ A) \rightarrow B. When the option --subtyping is enabled, Agda will make use of the subtyping rule.$(\mathrm{x}: \quad$ A) \rightarrow $B<: \quad(x: A) \rightarrow B$, so there is no need for eta-expanding the function f.

3.19 Lambda Abstraction

3.19.1 Pattern matching lambda

Anonymous pattern matching functions can be defined using one of the two following syntaxes:

```
\{p11 .. pln -> e1 ; ... ; pm1 .. pmn -> em }
\ where
    p11 .. p1n -> e1
    pm1 .. pmn -> em
```

(where, as usual, \backslash and $->$ can be replaced by λ and \rightarrow). Note that the where keyword introduces an indented block of clauses; if there is only one clause then it may be used inline.

Internally this is translated into a function definition of the following form:

```
extlam p11 .. p1n = e1
extlam pm1 .. pmn = em
```

where extlam is a fresh name. This means that anonymous pattern matching functions are generative. For instance, refl will not be accepted as an inhabitant of the type

```
(\lambda { true }->\mathrm{ true ; false }->\mathrm{ false }) ==
( }\lambda\mathrm{ { true }->\mathrm{ true ; false }->\mathrm{ false })
```

because this is equivalent to extlam1 \equiv extlam2 for some distinct fresh names extlam1 and extlam2. Currently the where and with constructions are not allowed in (the top-level clauses of) anonymous pattern matching functions.

Examples:

```
and : Bool }->\mathrm{ Bool }->\mathrm{ Bool
and = \lambda { true x }->\textrm{x}\mathrm{ ; false _ }->\mathrm{ false }
xor : Bool }->\mathrm{ Bool }->\mathrm{ Bool
xor = \lambda { true true }->\mathrm{ false
    ; false false }->\mathrm{ false
    ; _ _ }->\mathrm{ true
    }
eq : Bool }->\mathrm{ Bool }->\mathrm{ Bool
eq = \lambda where
    true true }->\mathrm{ true
    false false }->\mathrm{ true
    _ _ -> false
fst:{A:Set} {B:A 隹 Set } }->\mathrm{ \ A A B }->\textrm{A
fst = \lambda {(a, b) }->\textrm{a}
snd : {A:Set } {B:A T Set } (p : \Sigma A B) }->\mathrm{ B (fst p)
snd = \lambda {(a, b) }->\textrm{b}
```



```
swap = \lambda where (a,b) }->(\textrm{b},\textrm{a}
```

Regular pattern-matching lambdas are treated as non-erased function definitions. One can make a pattern-matching lambda erased by writing @ 0 or @erased after the lambda:

```
@0 _ : @0 Set }->\mathrm{ Set
_ = \@0 {A A A }
@0 _ : @0 Set -> Set
_ = \lambda @erased where
    A }->\textrm{A
```


3.20 Local Definitions: let and where

There are two ways of declaring local definitions in Agda:

- let-expressions
- where-blocks

3.20.1 let-expressions

A let-expression defines an abbreviation. In other words, the expression that we define in a let-expression can neither be recursive, nor can let bound functions be defined by pattern matching.

Example:

```
f : Nat
f = let h : Nat }->\mathrm{ Nat
    h m = suc (suc m)
    in h zero + h (suc zero)
```

let-expressions have the general form

```
let }\mp@subsup{\textrm{f}}{1}{}:\mp@subsup{\textrm{A}}{11}{}->\ldots,\ldots\mp@subsup{\textrm{A}}{1n}{}->\mp@subsup{\textrm{A}}{1}{
    f
    fm}:\mp@subsup{A}{m1}{}->\ldots,\mp@subsup{A}{mk}{}->\mp@subsup{A}{m}{
    fm
in e'
```

where previous definitions are in scope in later definitions. The type signatures can be left out if Agda can infer them. After type-checking, the meaning of this is simply the substitution $e^{\prime}\left[f_{1}:=\lambda x_{1} \ldots x_{n} \rightarrow e\right.$; $\left.\ldots ; f_{m}:=\lambda \mathrm{x}_{1} \ldots \mathrm{x}_{k} \rightarrow \mathrm{e}_{m}\right]$. Since Agda substitutes away let-bindings, they do not show up in terms Agda prints, nor in the goal display in interactive mode.

Let binding record patterns

For a record

```
record R : Set where
    constructor C
    field
        f : X
        g : Y
        h : Z
```

a let expression of the form

```
let (c x y z) = t
in u
```

will be translated internally to as

```
let x = f t
    y = g t
    z = h t
in u
```

This is not allowed if R is declared coinductive.

3.20.2 where-blocks

where-blocks are much more powerful than let-expressions, as they support arbitrary local definitions. A where can be attached to any function clause.
where-blocks have the general form

```
clause
    where
    decls
```

or

```
clause
    module M where
    decls
```

A simple instance is

```
g ps = e
    where
    f : A A }->\mathrm{ _ . }->\mp@subsup{\textrm{A}}{n}{}->\textrm{A
    f p p11 ... p pln}=\mp@subsup{\textrm{e}}{1}{
    ...
    ...
    f }\mp@subsup{\textrm{p}}{m1}{}\ldots\mp@subsup{\textrm{p}}{mn}{}=\mp@subsup{e}{m}{
```

Here, the $\mathrm{p}_{i j}$ are patterns of the corresponding types and e_{i} is an expression that can contain occurrences of f . Functions defined with a where-expression must follow the rules for general definitions by pattern matching.

Example:

```
reverse : {A : Set} }->\mathrm{ List A }->\mathrm{ List A
reverse {A} xs = rev-append xs []
    where
    rev-append : List A }->\mathrm{ List A }->\mathrm{ List A
    rev-append [] ys = ys
    rev-append (x :: xs) ys = rev-append xs (x :: ys)
```


Variable scope

The pattern variables of the parent clause of the where-block are in scope; in the previous example, these are A and xs. The variables bound by the type signature of the parent clause are not in scope. This is why we added the hidden binder $\{\mathrm{A}\}$.

Scope of the local declarations

The where-definitions are not visible outside of the clause that owns these definitions (the parent clause). If the where-block is given a name (form module M where), then the definitions are available as qualified by M , since module M is visible even outside of the parent clause. The special form of an anonymous module (module where) makes the definitions visible outside of the parent clause without qualification.
If the parent function of a named where-block (form module M where) is private, then module M is also private. However, the declarations inside M are not private unless declared so explicitly. Thus, the following example scope checks fine:

```
module Parent }\mp@subsup{}{1}{}\mathrm{ where
    private
        parent = local
            module Private where
            local = Set
    module Public = Private
\mp@subsup{test }{1}{}=\mp@subsup{\mathrm{ Parent }}{1}{}.\mathrm{ Public.local}
```

Likewise, a private declaration for a parent function does not affect the privacy of local functions defined under a module _ where-block:

```
module Parent2 where
    private
        parent = local
            module - where
            local = Set
\mp@subsup{test}{2}{\prime}=\mp@subsup{\mathrm{ Parent }}{2}{}.local
```

They can be declared private explicitly, though:

```
module Parents where
    parent = local
        module _ where
        private
            local = Set
```

Now, Parent ${ }^{\text {. local }}$ is not in scope.
A private declaration for the parent of an ordinary where-block has no effect on the local definitions, of course. They are not even in scope.

3.20.3 Proving properties

Sometimes one needs to refer to local definitions in proofs about the parent function. In this case, the module ... where variant is preferable.

```
reverse : {A : Set} }->\mathrm{ List A }->\mathrm{ List A
reverse {A} xs = rev-append xs []
    module Rev where
    rev-append : List A }->\mathrm{ List A }->\mathrm{ List A
    rev-append [] ys = ys
    rev-append (x :: xs) ys = rev-append xs (x :: ys)
```

This gives us access to the local function as

```
Rev.rev-append : {A : Set } (xs : List A) }->\mathrm{ List A }->\mathrm{ List A }->\mathrm{ List A
```

Alternatively, we can define local functions as private to the module we are working in; hence, they will not be visible in any module that imports this module but it will allow us to prove some properties about them.

```
private
    rev-append : {A : Set } }->\mathrm{ List A }->\mathrm{ List A }->\mathrm{ List A
    rev-append [] ys = ys
    rev-append (x :: xs) ys = rev-append xs (x :: ys)
reverse' : {A : Set } }->\mathrm{ List A }->\mathrm{ List A
reverse' xs = rev-append xs []
```


3.20.4 More Examples (for Beginners)

Using a let-expression:

```
tw-map : {A : Set} -> List A }->\mathrm{ List (List A)
tw-map {A} xs = let twice : List A }->\mathrm{ List A
```

```
twice xs = xs ++ xs
in map (\ x }->\mathrm{ twice [ x ]) xs
```

Same definition but with less type information:

```
tw-map' : {A : Set } }->\mathrm{ List A }->\mathrm{ List (List A)
tw-map' {A} xs = let twice : 
    twice xs = xs ++ xs
    in map (\ x }->\mathrm{ twice [ x ]) xs
```

Same definition but with a where-expression

```
tw-map'' : {A : Set } }->\mathrm{ List A }->\mathrm{ List (List A)
tw-map'' {A} xs = map (\ x }->\mathrm{ twice [ x ]) xs
    where twice : List A }->\mathrm{ List A
        twice xs = xs ++ xs
```

Even less type information using let:

```
g : Nat }->\mathrm{ List Nat
g zero = [ zero ]
g (suc n) = let sing = [ suc n ]
    in sing ++ g n
```

Same definition using where:

```
g' : Nat }->\mathrm{ List Nat
g' zero = [ zero ]
g' (suc n) = sing ++ g' n
    where sing = [ suc n ]
```

More than one definition in a let:

```
h : Nat }->\mathrm{ Nat
h n = let add2 : Nat
    add2 = suc (suc n)
    twice : Nat -> Nat
    twice m = m * m
    in twice add2
```

More than one definition in a where:

```
fibfact : Nat }->\mathrm{ Nat
fibfact n = fib n + fact n
    where fib : Nat }->\mathrm{ Nat
    fib zero = suc zero
    fib (suc zero) = suc zero
    fib (suc (suc n)) = fib (suc n) + fib n
    fact : Nat }->\mathrm{ Nat
    fact zero = suc zero
    fact (suc n) = suc n * fact n
```

Combining let and where:

```
k : Nat }->\mathrm{ Nat
k n = let aux : Nat }->\mathrm{ Nat
        aux m = pred (h m) + fibfact m
    in aux (pred n)
    where pred : Nat }->\mathrm{ Nat
        pred zero = zero
        pred (suc m) = m
```


3.21 Lexical Structure

Agda code is written in UTF-8 encoded plain text files with the extension . agda. Most unicode characters can be used in identifiers and whitespace is important, see Names and Layout below.

3.21.1 Tokens

Keywords and special symbols

Most non-whitespace unicode can be used as part of an Agda name, but there are two kinds of exceptions:
special symbols Characters with special meaning that cannot appear at all in a name. These are . ; \{\} () @".
keywords Reserved words that cannot appear as a name part, but can appear in a name together with other characters.
$=\mid->\rightarrow:$? $\backslash \lambda \forall \ldots \ldots$... abstract coinductive constructor data do eta-equality
field forall import in inductive infix infixl infixr instance interleaved let macro module mutual no-eta-equality open overlap pattern postulate primitive private quote quoteTerm record rewrite Set syntax tactic unquote unquoteDecl unquoteDef variable where with

The Set keyword can appear with a natural number suffix, optionally subscripted (see Sort System). For instance Set 42 and Set_{42} are both keywords.
keywords in import directives The following words are only reserved in import directives (in connection with import or open):
public using hiding renaming to

Names

A qualified name is a non-empty sequence of names separated by dots (.). A name is an alternating sequence of name parts and underscores ($_$), containing at least one name part. A name part is a non-empty sequence of unicode characters, excluding whitespace, _, and special symbols. A name part cannot be one of the keywords above, and cannot start with a single quote, ' (which are used for character literals, see Literals below).

Examples

- Valid: data?, : :, if_then_else_, 0b, \vdash _ $\in _, x=y$
- Invalid: data_?, foo__bar, _, a;b, [_.._]

The underscores in a name indicate where the arguments go when the name is used as an operator. For instance, the application _+_ 12 can be written as $1+2$. See Mixfix Operators for more information. Since most sequences of characters are valid names, whitespace is more important than in other languages. In the example above the whitespace around + is required, since $1+2$ is a valid name.

Qualified names are used to refer to entities defined in other modules. For instance Prelude. Bool.true refers to the name true defined in the module Prelude. Bool. See Module System for more information.

Literals

There are four types of literal values: integers, floats, characters, and strings. See Built-ins for the corresponding types, and Literal Overloading for how to support literals for user-defined types.
Integers Integer values in decimal, hexadecimal (prefixed by $0 x$), or binary (prefixed by 0 b) notation. The character _ can be used to separate groups of digits. Non-negative numbers map by default to built-in natural numbers, but can be overloaded. Negative numbers have no default interpretation and can only be used through overloading.
Examples: 123, 0xF0F080, -42, -0xF, 0b11001001, 1_000_000_000, 0b01001000_01001001.
Floats Floating point numbers in the standard notation (with square brackets denoting optional parts):

```
float ::= [-] decimal . decimal [exponent]
    | [-] decimal exponent
exponent ::= (e | E) [+ | -] decimal
```

These map to built-in floats and cannot be overloaded.
Examples: 1.0, -5.0e+12,1.01e-16, 4.2E9, 50e3.
Characters Character literals are enclosed in single quotes ('). They can be a single (unicode) character, other than $'$ or \backslash, or an escaped character. Escaped characters start with a backslash \backslash followed by an escape code. Escape codes are natural numbers in decimal or hexadecimal (prefixed by x) between 0 and $0 \times 10 \mathrm{ffff}(1114111)$, or one of the following special escape codes:

Code	ASCII	Code	ASCII	Code	ASCII	Code	ASCII
a	7	b	8	t	9	n	10
v	11	f	12	\backslash	\backslash	$'$	$'$
$"$	$"$	NUL	0	SOH	1	STX	2
ETX	3	EOT	4	ENQ	5	ACK	6
BEL	7	BS	8	HT	9	LF	10
VT	11	FF	12	CR	13	SO	14
SI	15	DLE	16	DC1	17	DC2	18
DC3	19	DC4	20	NAK	21	SYN	22
ETB	23	CAN	24	EM	25	SUB	26
ESC	27	FS	28	GS	29	RS	30
US	31	SP	32	DEL	127		

Character literals map to the built-in character type and cannot be overloaded.

Strings String literals are sequences of, possibly escaped, characters enclosed in double quotes ". They follow the same rules as character literals except that double quotes " need to be escaped rather than single quotes '. String literals map to the built-in string type by default, but can be overloaded.

Example: \quad "PDF TODOPDF TOD
\backslash "PDF TODOPDF TODOPDF TODO \backslash " $\backslash \mathrm{n} "$.

Holes

Holes are an integral part of the interactive development supported by the Emacs mode. Any text enclosed in \{! and $!\}$ is a hole and may contain nested holes. A hole with no contents can be written ?. There are a number of Emacs commands that operate on the contents of a hole. The type checker ignores the contents of a hole and treats it as an unknown (see Implicit Arguments).
Example: $\{!\mathrm{f}\{!\mathrm{x}!\} 5$! \}

Comments

Single-line comments are written with a double dash -- followed by arbitrary text. Multi-line comments are enclosed in $\{-$ and -$\}$ and can be nested. Comments cannot appear in string literals.

Example:

```
{- Here is a {- nested -}
    comment -}
s : String --line comment {-
s = "{- not a comment - }"
```


Pragmas

Pragmas are special comments enclosed in $\{-\#$ and \#-\} that have special meaning to the system. See Pragmas for a full list of pragmas.

3.21.2 Layout

Agda is layout sensitive using similar rules as Haskell, with the exception that layout is mandatory: you cannot use explicit \{, \} and ; to avoid it.

A layout block contains a sequence of statements and is started by one of the layout keywords:

```
abstract
constructor
do
field
instance
let
macro
mutual
postulate
primitive
private
variable
where
```

The first token after the layout keyword decides the indentation of the block. Any token indented more than this is part of the previous statement, a token at the same level starts a new statement, and a token indented less lies outside the block.

```
data Nat : Set where -- starts a layout block
    -- comments are not tokens
    zero : Nat -- statement 1
```

```
    suc : Nat }->\quad--\mathrm{ statement 2
    Nat -- also statement 2
one : Nat -- outside the layout block
one = suc zero
```

Note that the indentation of the layout keyword does not matter.
If several layout blocks are started by layout keywords without line break in between (where line breaks inside block comments do not count), then those blocks indented more than the last block go passive, meaning they cannot be further extended by new statements:

```
private module M where postulate
    A : Set -- module-block goes passive
    B : Set -- postulate-block can still be extended
    module N where -- private-block can still be extended
```

An Agda file contains one top-level layout block, with the special rule that the contents of the top-level module need not be indented.

```
module Example where
NotIndented : Set }\mp@subsup{\boldsymbol{I}}{}{\prime
NotIndented = Set
```


3.21.3 Literate Agda

Agda supports literate programming with multiple typesetting tools like LaTeX, Markdown and reStructuredText. For instance, with LaTeX, everything in a file is a comment unless enclosed in \backslash begin $\{$ code $\}$, \end } \{ code \} . Literate Agda files have special file extensions, like .lagda and . lagda.tex for LaTeX, . lagda.md for Markdown, . lagda.rst for reStructuredText instead of . agda. The main use case for literate Agda is to generate LaTeX documents from Agda code. See Generating HTML and Generating LaTeX for more information.

```
\documentclass{article}
% some preamble stuff
\begin{document }
Introduction usually goes here
\begin{code}
module MyPaper where
    open import Prelude
    five : Nat
    five = 2 + 3
\end{code}
Now, conclusions!
\end{document}
```


3.22 Literal Overloading

3.22.1 Natural numbers

By default natural number literals are mapped to the built-in natural number type. This can be changed with the FROMNAT built-in, which binds to a function accepting a natural number:

```
{-# BUILTIN FROMNAT fromNat #-}
```

This causes natural number literals n to be desugared to fromNat n, whenever fromNat is in scope unqualified (renamed or not). Note that the desugaring happens before implicit argument are inserted so fromNat can have any number of implicit or instance arguments. This can be exploited to support overloaded literals by defining a type class containing fromNat:

```
module number-simple where
    record Number {a} (A : Set a) : Set a where
        field fromNat : Nat }->\mathrm{ A
    open Number {{...}} public
```

```
{-# BUILTIN FROMNAT fromNat #-}
```

This definition requires that any natural number can be mapped into the given type, so it won't work for types like Fin n. This can be solved by refining the Number class with an additional constraint:

```
record Number {a} (A : Set a) : Set (lsuc a) where
    field
        Constraint : Nat }->\mathrm{ Set a
        fromNat : (n : Nat) {{_ : Constraint n}} }->\textrm{A
open Number {{...}} public using (fromNat)
{-# BUILTIN FROMNAT fromNat #-}
```

This is the definition used in Agda. Builtin.FromNat. A Number instance for Nat is simply this:

```
instance
    NumNat : Number Nat
    NumNat .Number.Constraint _ = \top
    NumNat .Number.fromNat }\quad\overline{m}=
```

A Number instance for Fin n can be defined as follows:

```
_\leq_ : (m n : Nat) }->\mathrm{ Set
zero sn= \
suc m \leq zero = \perp
suc m}\leq\mathrm{ suc n =m s n
fromN\leq: }\forall\textrm{m}n->\textrm{m}\leq\textrm{n}->\operatorname{Fin}(\mathrm{ suc n)
fromN\leq zero - _ = zero
fromN\leq (suc _) zero ()
fromN\leq (suc m) (suc n) p = suc (fromN\leqmn p)
instance
    NumFin : }\forall{n}->\mathrm{ Number (Fin (suc n))
    NumFin {n} .Number.Constraint m =m n
    NumFin {n} .Number.fromNat m {{m\leqn}}= fromN\leqm n m\leqn
test : Fin 5
test = 3
```

It is important that the constraint for literals is trivial. Here, $3 \leq 5$ evaluates to T whose inhabitant is found by unification.

Using predefined function from the standard library and instance NumNat, the NumF in instance can be simply:

```
open import Data.Fin using (Fin; #_)
open import Data.Nat using (suc; _\leq?_)
open import Relation.Nullary.Decidable using (True)
instance
    NumFin : }\forall{n}->\mathrm{ Number (Fin n)
    NumFin {n} .Number.Constraint m = True (suc m \leq? n)
    NumFin {n} .Number.fromNat m {{m<n}}= #_m {m<n =m<n}
```


3.22.2 Negative numbers

Negative integer literals have no default mapping and can only be used through the FROMNEG built-in. Binding this to a function fromNeg causes negative integer literals -n to be desugared to fromNeg n , where n is a built-in natural number. From Agda. Builtin. FromNeg:

```
record Negative {a} (A : Set a) : Set (lsuc a) where
    field
        Constraint : Nat }->\mathrm{ Set a
        fromNeg : (n : Nat) {{_: Constraint n}} }->\textrm{A
open Negative {{...}} public using (fromNeg)
{-# BUILTIN FROMNEG fromNeg #-}
```


3.22.3 Strings

String literals are overloaded with the FROMSTRING built-in, which works just like FROMNAT. If it is not bound string literals map to built-in strings. From Agda. Builtin. FromString:

```
record IsString {a} (A : Set a) : Set (lsuc a) where
    field
        Constraint : String }->\mathrm{ Set a
        fromString : (s : String) {{_ : Constraint s}} }->\textrm{A
open IsString {{...}} public using (fromString)
{-# BUILTIN FROMSTRING fromString #-}
```


3.22.4 Restrictions

Currently only integer and string literals can be overloaded.
Overloading does not work in patterns yet.

3.23 Lossy Unification

The option --experimental-lossy-unification enables an experimental heuristic in the unification checker intended to improve its performance for unification problems of the form $f e s_{0}=f e s_{1}$, i.e. unifying two applications of the same defined function, here f, to possibly different lists of arguments and projections eso and $e s_{1}$. The heuristic is sound but not complete. In particular if Agda accepts code with the flag enabled it should also accept it without the flag (with enough resources, and possibly needing extra type annotations).

The option can be used either globally or in an OPTIONS pragma, in the latter case it applies only to the current module.

3.23.1 Heuristic

When trying to solve the unification problem $f e s_{0}=f e s_{1}$ the heuristic proceeds by trying to solve eso $=$ $e s_{1}$, if that succeeds the original problem is also solved, otherwise unification proceeds as without the flag, likely by reducing both f eso and $f e s_{1}$.

3.23.2 Example

Suppose f adds 100 to its input as defined below

```
f : N}->\mathbb{N
f n = 100 + n
```

then to unify $f 2$ and $f(1+1)$ the heuristic would proceed by unifying 2 with $(1+1)$, which quickly succeeds. Without the flag we might instead first reduce both $f 2$ and $f(1+1)$ to 102 and then compare those results.

The performance will improve most dramatically when reducing an application of f would produce a large term, perhaps an element of a record type with several fields and/or large embedded proof terms.

3.23.3 Drawbacks

The main drawback is that the heursitic is not complete, i.e. it will cause Agda to ignore some possible solutions to unification variables. For example if f is a constant function, then the constraint $f ? 0=f 1$ does not uniquely determine $? 0$, but the heuristic will end up assigning 1 to ? 0 .

Such assignments can lead to Agda to report a type error which would not have been reported without the heuristic. This is because committing to ? $0=1$ might make other constraints unsatifiable.
The other drawback is that in some cases performance of unification will be worse with the heuristic. Specifically, if the heuristic will repeatedly attempt to unify lists of arguments $e s_{0}=e s_{1}$ while failing.

References

Slow typechecking of single one-line definition, issue (\#1625).

3.24 Mixfix Operators

A type name, function name, or constructor name can comprise one or more name parts if we separate them with underscore characters _, and the resulting name can be used as an operator. From left to right, each argument goes in the place of each underscore ..

For instance, we can join with underscores the name parts if, then, and else into a single name if_then_else_. The application of the function name if_then_else_ to some arguments named x, y, and z can still be written as:

- a standard application by using the full name if_then_else_x y z
- an operator application by placing the arguments between the name parts if x then y else z, leaving a space between arguments and part names
- other sections of the full name, for instance leaving one or two underscores:

```
-(if_then y else z) x
- (if x then_else z) y
- if x then y else_ z
- if x then_else_ y z
- if_then y else_ x z
- (if_then_else z) x y
```

Examples of type names, function names, and constructor names as mixfix operators:

```
-- Example type name __
_}\mp@subsup{_}{_}{}\quad: Bool -> Bool -> Boo
true }=>\textrm{b}=\textrm{b
false }=>\mathrm{ _ = true
-- Example function name _and_
_and_ : Bool }->\mathrm{ Bool }->\mathrm{ Bool
true and x = x
false and _ = false
-- Example function name if_then_else_
if_then_else_ : {A : Set} -> Bool }->\textrm{A}->\textrm{A}->\textrm{A
if true then x else y = x
if false then x else y = y
-- Example constructor name __:-
data List (A : Set) : Set where
    nil : List A
    _:__ : A }->\mathrm{ List A }->\mathrm{ List A
```


3.24.1 Precedence

Consider the expression true and false \Rightarrow false. Depending on which of _and_ and _ \Rightarrow _ has more precedence, it can either be read as (false and true) \Rightarrow false $=$ true, or as false and (true \Rightarrow false) = true.

Each operator is associated to a precedence, which is a floating point number (can be negative and fractional!). The default precedence for an operator is 20.

Note: Please note that $->$ is directly handled in the parser. As a result, the precedence of $->$ is lower than any precedence you may declare with infixl and infixr.

If we give _and_ more precedence than $\quad \Rightarrow_{\text {_ }}$, then we will get the first result:

```
infix 30 _and_
-- infix 20 _ #_ (default)
p-and : {x y z : Bool} }->\textrm{x}\mathrm{ and y }\textrm{y}=\textrm{z}\equiv(x\mathrm{ and y) }=>\textrm{z
p-and = refl
e-and : false and true }=>\mathrm{ false }\equiv\mathrm{ true
e-and = refl
```

But, if we declare a new operator _and' _ and give it less precedence than ${ }_{-} \Rightarrow_{-}$, then we will get the second result:

```
_and'_ : Bool }->\mathrm{ Bool }->\mathrm{ Bool
_and' _ = __and_
infix 15 _and'_
-- infix 20 _ #__ (default)
p-=>: {x y z : Bool} }->\textrm{x}\mathrm{ and' y mz z = x and' (y m z)
p-=> = refl
e-=> : false and' true }=>\mathrm{ false }\equiv\mathrm{ false
e-=> = refl
```

Fixities can be changed when importing with a renaming directive:

```
open M using (_\bullet_)
open M renaming (_\bullet_ to infixl 10 _*_)
```

This code brings two instances of the operator \qquad in scope:

- the first named _-_ and with its original fixity
- the second named _*_ and with the fixity changed to act like a left associative operator of precedence 10 .

3.24.2 Associativity

Consider the expression true \Rightarrow false \Rightarrow false. Depending on whether \Rightarrow_{-}associates to the left or to the right, it can be read as (false \Rightarrow true) \Rightarrow false $=$ false, or false \Rightarrow (true \Rightarrow false) $=$ true, respectively.
If we declare an operator ${ }_{-} \Rightarrow_{-}$as infixr, it will associate to the right:

```
infixr 20 _#_
p-right : {x y z : Bool} }->\textrm{x}=>\textrm{y}|\textrm{y}=\textrm{z}\equiv\textrm{E}=\textrm{x}=>(y=>z
p-right = refl
e-right : false }=>\mathrm{ true }=>\mathrm{ false }\equiv\mathrm{ true
e-right = refl
```

If we declare an operator \Rightarrow^{\prime} _ as infixl, it will associate to the left:

```
infixl 20 _>'_
_}\mp@subsup{}{}{\prime}_\mathrm{ _ BOOl }->\mathrm{ Bool }->\mathrm{ Bool
-}\mp@subsup{}{}{\prime
```



```
p-left = refl
e-left : false }\mp@subsup{|}{}{\prime}\mathrm{ true }\mp@subsup{|}{}{\prime}\mathrm{ false }\equiv\mathrm{ false
e-left = refl
```


3.24.3 Ambiguity and Scope

If you have not yet declared the fixity of an operator, Agda will complain if you try to use ambiguously:

```
e-ambiguous : Bool
e-ambiguous = true }=>\mathrm{ true }=>\mathrm{ true
```

```
Could not parse the application true }=>\mathrm{ true }=>\mathrm{ true
Operators used in the grammar:
    =>(infix operator, level 20)
```

Fixity declarations may appear anywhere in a module that other declarations may appear. They then apply to the entire scope in which they appear (i.e. before and after, but not outside).

3.24.4 Operators in telescopes

Agda does not yet support declaring the fixity of operators declared in telescopes, see Issue \#1235 https://github.com/agda/agda/issues/1235.

However, the following hack currently works:

```
module _ {A : Set} (_+_ : A -> A -> A) (let infixl 5 _+__; ____ = __+_) where
```


3.25 Module System

3.25.1 Module application

3.25.2 Anonymous modules

3.25.3 Basics

First let us introduce some terminology. A definition is a syntactic construction defining an entity such as a function or a datatype. A name is a string used to identify definitions. The same definition can have many names and at different points in the program it will have different names. It may also be the case that two definitions have the same name. In this case there will be an error if the name is used.

The main purpose of the module system is to structure the way names are used in a program. This is done by organising the program in an hierarchical structure of modules where each module contains a number of definitions and submodules. For instance,

```
module Main where
    module B where
    f : Nat }->\mathrm{ Nat
    f n = suc n
    g : Nat }->\mathrm{ Nat }->\mathrm{ Nat
    g n m = m
```

Note that we use indentation to indicate which definitions are part of a module. In the example f is in the module Main. B and g is in Main. How to refer to a particular definition is determined by where it is located in the module hierarchy. Definitions from an enclosing module are referred to by their given names as seen in the type of f above. To access a definition from outside its defining module a qualified name has to be used.

```
module Main}\mp@subsup{n}{2}{}\mathrm{ where
    module B where
        f : Nat }->\mathrm{ Nat
    f n = suc n
    ff : Nat }->\mathrm{ Nat
    ff x = B.f (B.f x)
```

To be able to use the short names for definitions in a module the module has to be opened.

```
module Main}\mp@subsup{|}{3}{}\mathrm{ where
    module B where
        f : Nat }->\mathrm{ Nat
        f n = suc n
    open B
    ff : Nat }->\mathrm{ Nat
    ff x = f (f x)
```

If A. qname refers to a definition d, then after open A, qname will also refer to d. Note that qname can itself be a qualified name. Opening a module only introduces new names for a definition, it never removes the old names. The policy is to allow the introduction of ambiguous names, but give an error if an ambiguous name is used.

Modules can also be opened within a local scope by putting the open B within a where clause:

```
ffi : Nat }->\mathrm{ Nat
ff f x = f (f x) where open B
```


3.25.4 Private definitions

To make a definition inaccessible outside its defining module it can be declared private. A private definition is treated as a normal definition inside the module that defines it, but outside the module the definition has no name. In a dependently type setting there are some problems with private definitions-since the type checker performs computations, private names might show up in goals and error messages. Consider the following (contrived) example

```
module Main}\mp@subsup{n}{4}{}\mathrm{ where
    module A where
        private
            IsZero' : Nat }->\mathrm{ Set
            IsZero' zero = \top
            IsZero' (suc n) = L
        IsZero : Nat }->\mathrm{ Set
        IsZero n = IsZero' n
    open A
    prf:(n : Nat) }->\mathrm{ IsZero n
    prf n = ?
```

The type of the goal ? 0 is IsZero n which normalises to IsZero' n . The question is how to display this normal form to the user. At the point of $? 0$ there is no name for IsZero'. One option could be try to fold the term and print IsZero n. This is a very hard problem in general, so rather than trying to do this we make it clear to the user that

IsZero' is something that is not in scope and print the goal as ; Main n_{4}.A. IsZero' n. The leading semicolon indicates that the entity is not in scope. The same technique is used for definitions that only have ambiguous names.
In effect using private definitions means that, from the user's perspective, we do not have subject reduction. This is just an illusion, however-the type checker has full access to all definitions.

3.25.5 Name modifiers

An alternative to making definitions private is to exert finer control over what names are introduced when opening a module. This is done by qualifying an open statement with one or more of the modifiers using, hiding, or renaming. You can combine both using and hiding with renaming, but not with each other. The effect of

```
open A using (xs) renaming (ys to zs)
```

is to introduce the names $x s$ and $z s$ where $x s$ refers to the same definition as $A . x s$ and $z s$ refers to A.ys. We do not permit xs, ys and zs to overlap. The other forms of opening are defined in terms of this one. An omitted renaming modifier is equivalent to an empty renaming.
To refer to a module M inside A you write module M. For instance,

```
open A using (module M)
```

Since 2.6.1: The fixity of an operator can be set or changed in a renaming directive:

```
module ExampleRenamingFixity where
    module ArithFoo where
        postulate
            A : Set
            _&_ _^_ : A -> A -> A
        infixr 10 _&_
    open ArithFoo renaming (_&_ to infixl 8 _+_; _^_ to infixl 10 _^_)
```

Here, we change the fixity of _\&_ while renaming it to _ ${ }_{-}$, and assign a new fixity to ${ }_{-}{ }^{\wedge}$ which has the default fixity in module ArithFoo.

3.25.6 Re-exporting names

A useful feature is the ability to re-export names from another module. For instance, one may want to create a module to collect the definitions from several other modules. This is achieved by qualifying the open statement with the public keyword:

```
module Example where
    module Nat }\mp@subsup{|}{1}{}\mathrm{ where
        data Nat}1 : Set wher
            zero : Nat 
            suc : Nat }\mp@subsup{|}{1}{}->\mp@subsup{N}{Nat}{1
    module Booll where
        data Booll : Set where
            true false : Bool_
```

```
module Prelude where
    open Nat1 public
    open Booli public
    isZero : Nat 
    isZero zero = true
    isZero (suc _) = false
```

The module Prelude above exports the names Nat, zero, Bool, etc., in addition to isZero.

3.25.7 Parameterised modules

So far, the module system features discussed have dealt solely with scope manipulation. We now turn our attention to some more advanced features.

It is sometimes useful to be able to work temporarily in a given signature. For instance, when defining functions for sorting lists it is convenient to assume a set of list elements A and an ordering over A. In Coq this can be done in two ways: using a functor, which is essentially a function between modules, or using a section. A section allows you to abstract some arguments from several definitions at once. We introduce parameterised modules analogous to sections in Coq. When declaring a module you can give a telescope of module parameters which are abstracted from all the definitions in the module. For instance, a simple implementation of a sorting function looks like this:

```
module Sort (A : Set)(_\leq_ : A }->\textrm{A}->\textrm{A}->\textrm{Bool)}\mathrm{ where
    insert : A }->\mathrm{ List A }->\mathrm{ List A
    insert x [] = x :: []
    insert x (y :: ys) with x \leq y
    insert x (y :: ys) | true = x :: y :: ys
    insert x (y :: ys) | false = y :: insert x ys
    sort : List A }->\mathrm{ List A
    sort [] = []
    sort (x :: xs) = insert x (sort xs)
```

As mentioned parametrising a module has the effect of abstracting the parameters over the definitions in the module, so outside the Sort module we have

```
Sort.insert : (A : Set)(_\leq_ : A }->\textrm{A}->\textrm{Bool})
    A }->\mathrm{ List A }->\mathrm{ List A
Sort.sort : (A : Set)(_\leq_ : A }->\textrm{A}->\textrm{BOOL})
    List A }->\mathrm{ List A
```

For function definitions, explicit module parameter become explicit arguments to the abstracted function, and implicit parameters become implicit arguments. For constructors, however, the parameters are always implicit arguments. This is a consequence of the fact that module parameters are turned into datatype parameters, and the datatype parameters are implicit arguments to the constructors. It also happens to be the reasonable thing to do.

Something which you cannot do in Coq is to apply a section to its arguments. We allow this through the module application statement. In our example:

```
module SortNat = Sort Nat leqNat
```

This will define a new module SortNat as follows

```
module SortNat where
    insert : Nat }->\mathrm{ List Nat }->\mathrm{ List Nat
    insert = Sort.insert Nat leqNat
    sort : List Nat }->\mathrm{ List Nat
    sort = Sort.sort Nat leqNat
```

The new module can also be parameterised, and you can use name modifiers to control what definitions from the original module are applied and what names they have in the new module. The general form of a module application is

```
module M1 }\Delta=\mathrm{ M2 terms modifiers
```

A common pattern is to apply a module to its arguments and then open the resulting module. To simplify this we introduce the short-hand

```
open module M1 }\Delta=\mathrm{ M2 terms [public] mods
```

for

```
module M1 }\Delta=M2\mathrm{ terms mods
open M1 [public]
```


3.25.8 Splitting a program over multiple files

When building large programs it is crucial to be able to split the program over multiple files and to not have to type check and compile all the files for every change. The module system offers a structured way to do this. We define a program to be a collection of modules, each module being defined in a separate file. To gain access to a module defined in a different file you can import the module:

```
import M
```

In order to implement this we must be able to find the file in which a module is defined. To do this we require that the top-level module A. B. C is defined in the file C.agda in the directory A/B/. One could imagine instead to give a file name to the import statement, but this would mean cluttering the program with details about the file system which is not very nice.
When importing a module M, the module and its contents are brought into scope as if the module had been defined in the current file. In order to get access to the unqualified names of the module contents it has to be opened. Similarly to module application we introduce the short-hand

```
open import M
```

for

```
import M
open M
```

Sometimes the name of an imported module clashes with a local module. In this case it is possible to import the module under a different name.

```
import M as M'
```

It is also possible to attach modifiers to import statements, limiting or changing what names are visible from inside the module. Note that modifiers attached to open import statements apply to the open statement and not the import statement.

3.25.9 Datatype modules and record modules

When you define a datatype it also defines a module so constructors can now be referred to qualified by their data type. For instance, given:

```
module DatatypeModules where
    data Nat2 : Set where
    zero : Nat2
    suc : Nat2 }->\mp@subsup{\textrm{Nat}}{2}{
data Fin : Nat2 }->\mathrm{ Set where
    zero: }\forall{n}->\operatorname{Fin}(\mathrm{ suc n)
    suc: }\forall{n}->Fin n -> Fin (suc n
```

you can refer to the constructors unambiguously as Nat_{2}. zero, Nat_{2}. suc, Fin.zero, and Fin. suc (Nat_{2} and Fin are modules containing the respective constructors). Example:


```
inj .m m refl = refl
```

Previously you had to write something like


```
inj1 .m m refl = refl
```

to make the type checker able to figure out that you wanted the natural number suc in this case.
Also record declarations define a corresponding module, see Record modules.

3.26 Mutual Recursion

Agda offers multiple ways to write mutually-defined data types, record types and functions.

- Old-style mutual blocks
- Forward declaration
- Interleaved mutual blocks

The last two are more expressive than the first one as they allow the interleaving of declarations and definitions thus making it possible for some types to refere to the constructors of a mutually-defined datatype.

3.26.1 Interleaved mutual blocks

Mutual recursive functions can be written by placing them inside an interleaved mutual block. The type signature of each function must come before its defining clauses and its usage sites on the right-hand side of other functions. The clauses for different functions can be interleaved e.g. for pedagogical purposes:

```
interleaved mutual
    -- Declarations:
    even : Nat }->\mathrm{ Bool
    odd : Nat }->\mathrm{ Bool
```

```
-- zero is even, not odd
even zero = true
odd zero = false
-- suc case: switch evenness on the predecessor
even (suc n) = odd n
odd (suc n) = even n
```

You can mix arbitrary declarations, such as modules and postulates, with mutually recursive definitions. For data types and records the following syntax is used to separate the declaration from the introduction of constructors in one or many data . . . where blocks:

```
interleaved mutual
    -- Declaration of a product record, a universe of codes, and a decoding function
    record _×_ (A B : Set) : Set
    data U : Set
    El : U }->\mathrm{ Set
    -- We have a code for the type of natural numbers in our universe
    data U where `Nat : U
    El `Nat = Nat
    -- Btw we know how to pair values in a record
    record _×_ A B where
        inductive; constructor _,_
        field fst : A; snd : B
    -- And we have a code for pairs in our universe
    data _ where
        -` }\mp@subsup{X}{-}{}:(ABB:U) ->
    El (A`` B) = El A }\times\mathrm{ El B
-- we can now build types of nested pairs of natural numbers
ty-example : U
ty-example = `Nat ` ` ((`Nat ` × `Nat) `` `Nat)
-- and their values
val-example : El ty-example
val-example = 0, ((1, 2) , 3)
```

You can mix constructors for different data types in a dat a _ where block (underscore instead of name).
The interleaved mutual blocks get desugared into the Forward declaration blocks described below by:

- leaving the signatures where they are,
- grouping the clauses for a function together with the first of them, and
- grouping the constructors for a datatype together with the first of them.

3.26.2 Forward declaration

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function before their definitions. The span of the mutual block will be automatically inferred by Agda:

```
f : A
g : B[f]
f = a[f, g]
g = b[f, g].
```

You can mix arbitrary declarations, such as modules and postulates, with mutually recursive definitions. For data types and records the following syntax is used to separate the declaration from the definition:

```
-- Declaration.
data Vec (A : Set) : Nat -> Set -- Note the absence of 'where'.
-- Definition.
data Vec A where -- Note the absence of a type signature.
    [] : Vec A zero
    _::_: {n : Nat} }->\textrm{A}->\textrm{Vec}A\textrm{A}->\textrm{Vec}A(\mathrm{ Nuc n)
-- Declaration.
record Sigma (A : Set) (B : A }->\mathrm{ Set) : Set
-- Definition.
record Sigma A B where
    constructor _'_
    field fst : A
        snd : B fst
```

The parameter lists in the second part of a data or record declaration behave like variables left-hand sides (although infix syntax is not supported). That is, they should have no type signatures, but implicit parameters can be omitted or bound by name.

Such a separation of declaration and definition is for instance needed when defining a set of codes for types and their interpretation as actual types (a so-called universe):

```
-- Declarations.
data TypeCode : Set
Interpretation : TypeCode }->\mathrm{ Set
-- Definitions.
data TypeCode where
    nat : TypeCode
    pi : (a : TypeCode) (b : Interpretation a }->\mathrm{ TypeCode) }->\mathrm{ TypeCode
Interpretation nat = Nat
Interpretation (pi a b) = (x : Interpretation a) }->\mathrm{ Interpretation (b x)
```

Note: In contrast to Interleaved mutual blocks, in forward-declaration style we can only have one data . . . where block per data type.

When making separated declarations/definitions private or abstract you should attach the private keyword to the declaration and the abstract keyword to the definition. For instance, a private, abstract function can be defined as

```
private
    f : A
abstract
    f = e
```


3.26.3 Old-style mutual blocks

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function before their definitions:

```
mutual
    f : A
    f = a[f, g]
    g : B[f]
    g = b[f, g]
```

Using the mutual keyword, the universe example from above is expressed as follows:

```
mutual
    data TypeCode : Set where
        nat : TypeCode
        pi : (a : TypeCode) (b : Interpretation a }->\mathrm{ TypeCode) }->\mathrm{ TypeCode
    Interpretation : TypeCode }->\mathrm{ Set
    Interpretation nat = Nat
    Interpretation (pi a b) = (x : Interpretation a) }->\mathrm{ Interpretation (b x)
```

This alternative syntax desugars into the new syntax by sorting the content of the mutual block into a declaration and a definition part and placing the declarations before the definitions.
Declarations comprise:

- Type signatures of functions, data and record declarations, unquoteDecl. (Function includes here postulate and primitive etc.)
- Module statements, such as module aliases, import and open statements.
- Pragmas that only need the name, but not the definition of the thing they affect (e.g. INJECTIVE).

Definitions comprise:

- Function clauses, data constructors and record definitions, unquoteDef.
- pattern synonym definitions.
- Pragmas that need the definition, e.g. INLINE, ETA, etc.
- Pragmas that are not needed for type checking, like compiler pragmas.

Module definitions with module . . . where are not supported in old-style mutual blocks.

3.27 Pattern Synonyms

A pattern synonym is a declaration that can be used on the left hand side (when pattern matching) as well as the right hand side (in expressions). For example:

```
data Nat : Set where
    zero : Nat
    suc : Nat }->\mathrm{ Nat
pattern z = zero
pattern ss x = suc (suc x)
```

(continued from previous page)

```
f : Nat }->\mathrm{ Nat
f z = z
f (suc z) = ss z
f (ss n) = n
```

Pattern synonyms are implemented by substitution on the abstract syntax, so definitions are scope-checked but not type-checked. They are particularly useful for universe constructions.

3.27.1 Overloading

Pattern synonyms can be overloaded as long as all candidates have the same shape. Two pattern synonym definitions have the same shape if they are equal up to variable and constructor names. Shapes are checked at resolution time and after expansion of nested pattern synonyms.

For example:

```
data List (A : Set) : Set where
    lnil : List A
    lcons : A }->\mathrm{ List A }->\mathrm{ List A
data Vec (A : Set) : Nat }->\mathrm{ Set where
    vnil : Vec A zero
    vcons : }\forall{n}->A->VecA n -> Vec A (suc n
pattern [] = lnil
pattern [] = vnil
pattern _:__ x xs = lcons x xs
pattern _:_ y ys = vcons y ys
lmap : }\forall{A\textrm{A}}->(\textrm{A}->\textrm{B})->\mathrm{ List A }->\mathrm{ List B
lmap f [] = []
lmap f (x :: XS) = f x :: lmap f xS
vmap : }\forall{{ABn}->(A->B)->Vec A n M Vec B n
vmap f [] = []
vmap f (x :: xs) = f x :: vmap f xs
```

Flipping the arguments in the synonym for vcons, changing it to pattern $\quad \because-y s y=$ vcons y ys, results in the following error when trying to use the synonym:

```
Cannot resolve overloaded pattern synonym _:!,' since candidates
have different shapes:
    pattern _:__ x xs = lcons x xs
        at pattern-synonyms.lagda.rst:51,13-16
    pattern __:_ ys y = vcons y ys
        at pattern-synonyms.lagda.rst:52,13-16
(hint: overloaded pattern synonyms must be equal up to variable and
constructor names)
when checking that the clause lmap f (x :: xs) = f x :: lmap f xs has
type {A B : Set} }->(A)->B)->\mathrm{ List A }->\mathrm{ List B
```


3.27.2 Refolding

For each pattern pattern $1 \mathrm{hs}=$ rhs, Agda declares a DISPLAY pragma refolding rhs to lhs (see The DISPLAY pragma for more details).

3.28 Positivity Checking

Note: This is a stub.

3.28.1 The NO_POSITIVITY_CHECK pragma

The pragma switches off the positivity checker for data/record definitions and mutual blocks. This pragma was added in Agda 2.5.1
The pragma must precede a data/record definition or a mutual block. The pragma cannot be used in --safe mode.
Examples:

- Skipping a single data definition:

```
{-# NO_POSITIVITY_CHECK #-}
data D : Set where
    lam:(D }->\textrm{D})->\textrm{D
```

- Skipping a single record definition:

```
{-# NO_POSITIVITY_CHECK #-}
record U : Set where
    field ap : U }->\textrm{U
```

- Skipping an old-style mutual block. Somewhere within a mutual block before a data/record definition:

```
mutual
    data D : Set where
        lam:(D }->\textrm{D})->\textrm{D
    {-# NO_POSITIVITY_CHECK #-}
    record U : Set where
        field ap : U }->\textrm{U
```

- Skipping an old-style mutual block. Before the mutual keyword:

```
{-# NO_POSITIVITY_CHECK #-}
mutual
    data D : Set where
        lam:(D }->\textrm{D})->\textrm{D
    record U : Set where
        field ap : U -> U
```

- Skipping a new-style mutual block. Anywhere before the declaration or the definition of a data/record in the block:

```
record U : Set
data D : Set
record U where
    field ap : U }->\textrm{U
{-# NO_POSITIVITY_CHECK #-}
data D where
    lam:(D }->\textrm{D})->\textrm{D
```


3.28.2 POLARITY pragmas

Polarity pragmas can be attached to postulates. The polarities express how the postulate's arguments are used. The following polarities are available:

- _: Unused.
- ++: Strictly positive.
- +: Positive.
- -: Negative.
- *: Unknown/mixed.

Polarity pragmas have the form \{-\# POLARITY name <zero or more polarities> \#-\}, and can be given wherever fixity declarations can be given. The listed polarities apply to the given postulate's arguments (explicit/implicit/instance), from left to right. Polarities currently cannot be given for module parameters. If the postulate takes n arguments (excluding module parameters), then the number of polarities given must be between 0 and n (inclusive).

Polarity pragmas make it possible to use postulated type formers in recursive types in the following way:

```
postulate
    \| - \| ~ : ~ S e t ~ \rightarrow ~ S e t
{-# POLARITY |_| ++ #-}
data D : Set where
    c : | D| | D
```

Note that one can use postulates that may seem benign, together with polarity pragmas, to prove that the empty type is inhabited:

```
postulate
    _#_ : Set }->\mathrm{ Set }->\mathrm{ Set
    lambda : {A B : Set} }->(\textrm{A}->\textrm{B})->\textrm{A}=>\textrm{B
    apply : {A B : Set} }->\textrm{A}=>\textrm{B}->\textrm{A}->\textrm{B
{-# POLARITY ____ ++ #-}
data }\perp\mathrm{ : Set where
data D : Set where
    c : D # & }->\mathrm{ D
not-inhabited : D }->
not-inhabited (c f) = apply f (c f)
```

```
d : D
```

$d=c(l a m b d a \operatorname{not}-i n h a b i t e d)$
bad : \perp
bad = not-inhabited d

Polarity pragmas are not allowed in safe mode.

3.29 Postulates

A postulate is a declaration of an element of some type without an accompanying definition. With postulates we can introduce elements in a type without actually giving the definition of the element itself.

The general form of a postulate declaration is as follows:

```
postulate
    c11 ... c1i : <Type>
    ...
    cn1 ... cnj : <Type>
```

Example:

```
postulate
    A B : Set
    a : A
    b : B
    _=AB=_ : A -> B -> Set
    a==b : a =AB= b
```

Introducing postulates is in general not recommended. Once postulates are introduced the consistency of the whole development is at risk, because there is nothing that prevents us from introducing an element in the empty set.

```
data False : Set where
postulate bottom : False
```

A preferable way to work is to define a module parametrised by the elements we need

```
module Absurd (bt : False) where
module M (A B : Set) (a : A) (b : B)
    (_=AB=_ : A -> B > Set) (a==b : a =AB= b) where
    -- . . .
```


3.29.1 Postulated built-ins

Some Built-ins such as Float and Char are introduced as a postulate and then given a meaning by the corresponding \{-\# BUILTIN ... \#-\} pragma.

3.30 Pragmas

Pragmas are comments that are not ignored by Agda but have some special meaning. The general format is:

- \# <PRAGMA_NAME> <arguments> \#-\}

3.30.1 Index of pragmas

- BUILTIN
- CATCHALL
- COMPILE
- DISPLAY
- FOREIGN
- INJECTIVE
- INLINE
- NO_POSITIVITY_CHECK
- NO_TERMINATION_CHECK
- NO_UNIVERSE_CHECK
- NOINLINE
- NON_COVERING
- NON_TERMINATING
- OPTIONS
- POLARITY
- REWRITE
- STATIC
- terminating
- WARNING_ON_USAGE
- WARNING_ON_IMPORT

See also Command-line and pragma options.

The DISPLAY pragma

Users can declare a DISPLAY pragma:

```
(-# DISPLAY f el .. en =e #-}
```

This causes f e1 . . en to be printed in the same way as e, where ei can bind variables used in e. The expressions ei and e are scope checked, but not type checked.

For example this can be used to print overloaded (instance) functions with the overloaded name:

```
instance
    NumNat : Num Nat
    NumNat = record { ..; _+_ = natPlus }
{-# DISPLAY natPlus a b = a + b #-}
```


Limitations

- Left-hand sides are restricted to variables, constructors, defined functions or types, and literals. In particular, lambdas are not allowed in left-hand sides.
- Since DISPLAY pragmas are not type checked implicit argument insertion may not work properly if the type of f computes to an implicit function space after pattern matching.

The INJECTIVE pragma

Injective pragmas can be used to mark a definition as injective for the pattern matching unifier. This can be used as a version of --injective-type-constructors that only applies to specific datatypes.

Example:

```
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
data Fin : Nat }->\mathrm{ Set where
    zero: {n : Nat} }->\mathrm{ Fin (suc n)
    suc : {n : Nat} }->\mathrm{ Fin n }->\mathrm{ Fin (suc n)
{-# INJECTIVE Fin #-}
Fin-injective : {m n : Nat } }->\mathrm{ Fin m 三 Fin n mm m n
Fin-injective refl = refl
```

Aside from datatypes, this pragma can also be used to mark other definitions as being injective (for example postulates).

The INLINE and NOINLINE pragmas

A definition marked with an INLINE pragma is inlined during compilation. If it is a simple definition that does no pattern matching, it is also inlined in function bodies at type-checking time.

When the --auto-inline command-line option is enabled, definitions are automatically marked INLINE if they satisfy the following criteria:

- No pattern matching.
- Uses each argument at most once.
- Does not use all its arguments.

Automatic inlining can be prevented using the NOINLINE pragma.
Example:

```
-- Would be auto-inlined since it doesn't use the type arguments.
__ : {A B C : Set } ->(B }->\textrm{C})->(\textrm{A}->\textrm{B})->\textrm{A}->\textrm{C
(f o g) x = f (g x)
```

(continued from previous page)

```
{-# NOINLINE _o_#-} -- prevents auto-inlining
-- Would not be auto-inlined since it's using all its arguments
O_ : (Set }->\mathrm{ Set ) }->\mathrm{ (Set }->\mathrm{ Set ) }->\mathrm{ Set }->\mathrm{ Set
(F OG) X = F (G X)
{-# INLINE _o_ #-} -- force inlining
```


The NON_COVERING pragma

New in version 2.6.1.
The NON_COVERING pragma can be placed before a function (or a block of mutually defined functions) which the user knows to be partial. To be used as a version of --allow-incomplete-matches that only applies to specific functions.

The OPTIONS pragma

Some options can be given at the top of .agda files in the form
\{-\# OPTIONS --\{opt $\left.{ }_{1}\right\}$--\{opt $\left.{ }_{2}\right\}$... \#-\}
The possible options are listed in Command-line and pragma options.

The WARNING_ON_pragmas
A library author can use a WARNING_ON_USAGE pragma to attach to a defined name a warning to be raised whenever this name is used (since Agda 2.5.4).

Similarly they can use a WARNING_ON_IMPORT pragma to attach to a module a warning to be raised whenever this module is imported (since Agda 2.6.1).

This would typically be used to declare a name or a module 'DEPRECATED' and advise the end-user to port their code before the feature is dropped.

Users can turn these warnings off by using the --warn=noUserWarning option. For more information about the warning machinery, see Warnings.

Example:

```
-- The new name for the identity
id : {A : Set} }->\textrm{A}->\textrm{A
id x = x
-- The deprecated name
\lambdax->x = id
-- The warning
{-# WARNING_ON_USAGE \lambdax->x "DEPRECATED: USe `id` instead of ` \lambdax->x`" #-}
{-# WARNING_ON_IMPORT "DEPRECATED: USe module `Function.Identity` rather than_
\hookrightarrow`Identity`" #-}
```


3.31 Prop

Prop is Agda's built-in sort of definitionally proof-irrelevant propositions. It is similar to the sort Set, but all elements of a type in Prop are considered to be (definitionally) equal.
The implementation of Prop is based on the POPL 2019 paper Definitional Proof-Irrelevance without K by Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau.

3.31.1 Usage

Just as for Set, we can define new types in Prop's as data or record types:

```
data }\perp: Prop wher
record T : Prop where
    constructor tt
```

When defining a function from a data type in Prop to a type in Set, pattern matching is restricted to the absurd pattern ():

```
absurd : (A : Set) }->\perp->
absurd A ()
```

Unlike for Set, all elements of a type in Prop are definitionally equal. This implies all applications of absurd are the same:

```
only-one-absurdity : {A : Set } }->\mathrm{ (p q : L) }->\mathrm{ absurd A p }\equiv\mathrm{ absurd A q
only-one-absurdity p q = refl
```

Since pattern matching on datatypes in Prop is limited, it is recommended to define types in Prop as recursive functions rather than inductive datatypes. For example, the relation _$\leq _$on natural numbers can be defined as follows:

```
_\leq_ : Nat }->\mathrm{ Nat }->\mathrm{ Prop
zero sy = 丁
suc x \leq zero = \perp
suc }x\leq\operatorname{suc}y=x\leq
```

The induction principle for _ \leq _ can then be defined by matching on the arguments of type Nat:

```
module _ (P : (m n : Nat) }->\mathrm{ Set)
    (pzy : (y : Nat) }->\textrm{P}\mathrm{ zero y)
    (pss : (x y : Nat) }->\textrm{P}x\textrm{x y }->\textrm{P}\mathrm{ (suc x) (suc y)) where
    s-ind : (m n : Nat) }->\textrm{m}\leq\textrm{n}->\textrm{P
    s-ind zero y pf = pzy y
    \leq-ind (suc x) (suc y) pf = pss x y (\leq-ind x y pf)
    s-ind (suc_) zero ()
```

Note that while it is also possible to define _ \leq_{-}as a datatype in Prop, it is hard to use that version because of the limitations to matching.

When defining a record type in Set, the types of the fields can be both in Set and Prop. For example:

```
record Fin (n : Nat) : Set where
    constructor _[_]
    field
```

```
    \llbracket_\rrbracket: Nat
    proof : suc \llbracket_\rrbracket\leq n
open Fin
Fin-\equiv: \forall {n} (x y : Fin n) }->\mathrm{ 【 x \ \【y】 y x \ y
Fin-\equiv x y refl = refl
```


3．31．2 The predicative hierarchy of Prop

Just as for Set，Agda has a predicative hierarchy of sorts Prop（＝Prop），Prop ${ }_{1}$ ，Prop ${ }_{2}$ ，．．．where Prop ： Set_{1}, Prop $_{1}: \operatorname{Set}_{2}$, Prop $_{2}: \operatorname{Set}_{3}$ ，etc．Like Set，Prop also supports universe polymorphism（see universe levels），so for each \mathcal{l} ：Level we have the sort Prop \mathcal{C} ．For example：

```
True : }\forall{{}}->\mathrm{ Prop (lsuc l)
True {{} = \forall (P : Prop {) }->\textrm{P}->\textrm{P
```


3．31．3 The propositional squash type

When defining a datatype in Prop \mathcal{l} ，it is allowed to have constructors that take arguments in Set \mathcal{l}^{\prime} for any $\mathcal{l}^{\prime} \leq$ l．For example，this allows us to define the propositional squash type and its eliminator：

```
data Squash {l} (A : Set l) : Prop l where
    squash : A }->\mathrm{ Squash A
```



```
squash-elim A P f (squash x) = f x
```

This type allows us to simulate Agda＇s existing irrelevant arguments（see irrelevance）by replacing ．A with Squash A．

3．31．4 Limitations

It is possible to define an equality type in Prop as follows：

```
data_\doteq_ {l} {A:Set {} (x : A) : A }->\mathrm{ Prop { where
    refl : x \doteq x
```

However，the corresponding eliminator cannot be defined because of the limitations on pattern matching．As a conse－ quence，this equality type is only useful for refuting impossible equations：

```
0\not\equiv1 : 0 \doteq 1 -> \perp
0\not\equiv1 ()
```


3．32 Record Types

[^2]- Declaring record types
- Constructing record values
- Decomposing record values
- Record update
- Record modules
- Eta-expansion
- Recursive records
- Instance fields

Records are types for grouping values together. They generalise the dependent product type by providing named fields and (optional) further components.

3.32.1 Example: the Pair type constructor

Record types can be declared using the record keyword

```
record Pair (A B : Set) : Set where
    field
        fst : A
        snd : B
```

This defines a new type constructor Pair : Set \rightarrow Set \rightarrow Set and two projection functions

```
Pair.fst : {A B : Set } }->\mathrm{ Pair A B }->\mathrm{ A
Pair.snd : {A B : Set } }->\mathrm{ Pair A B }->\mathrm{ B
```

Elements of record types can be defined using a record expression

```
p23 : Pair Nat Nat
p23 = record { fst = 2; snd = 3 }
```

or using copatterns. Copatterns may be used prefix

```
p34 : Pair Nat Nat
Pair.fst p34=3
Pair.snd p34=4
```

suffix (in which case they are written prefixed with a dot)

```
p56 : Pair Nat Nat
p56 .Pair.fst = 5
p56 .Pair.snd = 6
```

or using an anonymous copattern-matching lambda (you may only use the suffix form of copatterns in this case)

```
p78 : Pair Nat Nat
p78 = \lambda where
    .Pair.fst }->
    .Pair.snd }->
```

If you use the constructor keyword, you can also use the named constructor to define elements of the record type:

```
record Pair (A B : Set) : Set where
    constructor _,_
    field
        fst : A
        snd : B
p45 : Pair Nat Nat
p45=4,5
```

In this sense, record types behave much like single constructor datatypes (but see Eta-expansion below).

3.32.2 Declaring, constructing and decomposing records

Declaring record types

The general form of a record declaration is as follows:

```
record <recordname> <parameters> : Set <level> where
    <directives>
    constructor <constructorname>
    field
        <fieldname1> : <type1>
        <fieldname2> : <type2>
        -- ...
    <declarations>
```

All the components are optional, and can be given in any order. In particular, fields can be given in more than one block, interspersed with other declarations. Each field is a component of the record. Types of later fields can depend on earlier fields.

The directives available are eta-equality, no-eta-equality, pattern (see Eta-expansion), inductive and co-inductive (see Recursive records).

Constructing record values

Record values are constructed by giving a value for each record field:

```
record { <fieldname1> = <term1> ; <fieldname2> = <term2> ; ... }
```

where the types of the terms match the types of the fields. If a constructor <constructorname> has been declared for the record, this can also be written

```
<constructorname> <term1> <term2> ...
```

For named definitions, this can also be expressed using copatterns:

```
<named-def> : <recordname> <parameters>
<recordname>.<fieldname1> <named-def> = <term1>
<recordname>.<fieldname2> <named-def> = <term2>
...
```

Records can also be constructed by updating other records.

Building records from modules

The record \{ <fields> \} syntax also accepts module names. Fields are defined using the corresponding definitions from the given module. For instance assuming this record type R and module M :

```
record R : Set where
    field
        x : X
        y : Y
        z : Z
module M where
    x = ...
    y = ...
r : R
r = record { M; z = .. }
```

This construction supports any combination of explicit field definitions and applied modules. If a field is both given explicitly and available in one of the modules, then the explicit one takes precedence. If a field is available in more than one module then this is ambiguous and therefore rejected. As a consequence the order of assignments does not matter.

The modules can be both applied to arguments and have import directives such as hiding, using, and renaming. Here is a contrived example building on the example above:

```
module M2 (a : A) where
    w = ...
    z = ...
r2 : A }->\textrm{R
r2 a = record { M hiding (y); M2 a renaming (w to y) }
```


Decomposing record values

With the field name, we can project the corresponding component out of a record value. It is also possible to pattern match against inductive records:

```
sum : Pair Nat Nat }->\mathrm{ Nat
sum (x,y) = x + y
```

Or, using a let binding record pattern:

```
sum' : Pair Nat Nat }->\mathrm{ Nat
sum' p = let (x,y) = p in }x+
```

Note: Naming the constructor is not required to enable pattern matching against record values. Record expressions can appear as patterns.

Record update

Assume that we have a record type and a corresponding value:

```
record MyRecord : Set where
    field
        a b c : Nat
old : MyRecord
old = record { a = 1; b = 2; c = 3 }
```

Then we can update (some of) the record value's fields in the following way:

```
new : MyRecord
new = record old { a = 0; c = 5 }
```

Here new normalises to record $\{\mathrm{a}=0 ; \mathrm{b}=2 ; \mathrm{c}=5$ \}. Any expression yielding a value of type MyRecord can be used instead of old. Using that records can be built from module names, together with the fact that all records define a module, this can also be written as

```
new' : MyRecord
new' = record { MyRecord old; a = 0; c = 5}
```

Record updating is not allowed to change types: the resulting value must have the same type as the original one, including the record parameters. Thus, the type of a record update can be inferred if the type of the original record can be inferred.

The record update syntax is expanded before type checking. When the expression

```
record old { upd-fields }
```

is checked against a record type R, it is expanded to

```
let r = old in record { new-fields }
```

where \circ ld is required to have type R and new-fields is defined as follows: for each field x in R,

- if $x=e$ is contained in upd-fields then $x=e$ is included in new-fields, and otherwise
- if x is an explicit field then $x=R . x \quad r$ is included in new-fields, and
- if x is an implicit or instance field, then it is omitted from new-fields.

The reason for treating implicit and instance fields specially is to allow code like the following:

```
data Vec (A : Set) : Nat }->\mathrm{ Set where
    [] : Vec A zero
    _:__: \forall{n} ->A }->\mathrm{ Vec A n }->\mathrm{ Vec A (suc n)
record R : Set where
    field
        {length} : Nat
        vec : Vec Nat length
        -- More fields ...
xS : R
xs = record { vec = 0 :: 1 :: 2 :: [] }
ys = record xs { vec = 0 :: [] }
```

Without the special treatment the last expression would need to include a new binding for length (for instance length = _).

3.32.3 Record modules

Along with a new type, a record declaration also defines a module with the same name, parameterised over an element of the record type containing the projection functions. This allows records to be "opened", bringing the fields into scope. For instance

```
swap : {A B : Set} }->\mathrm{ Pair A B }->\mathrm{ Pair B A
swap p = snd , fst
    where open Pair p
```

In the example, the record module Pair has the shape

```
module Pair {A B : Set} (p : Pair A B) where
    fst : A
    snd : B
```

It's possible to add arbitrary definitions to the record module, by defining them inside the record declaration

```
record Functor (F : Set }->\mathrm{ Set) : Set }\mp@subsup{\mp@code{l}}{1}{\mathrm{ where}
    field
        fmap: : {{A B } }->(\textrm{A}->\textrm{B})->\textrm{F}A->\textrm{A}->\textrm{B
    _<$_: }\forall{A\textrm{AB}}->\textrm{A}->\textrm{F}B->\textrm{B}->\textrm{F
    x<$ fb = fmap ( (\lambda_->x) fb
```

Note: In general new definitions need to appear after the field declarations, but simple non-recursive function definitions without pattern matching can be interleaved with the fields. The reason for this restriction is that the type of the record constructor needs to be expressible using let-expressions. In the example below D_{1} can only contain declarations for which the generated type of $m k R$ is well-formed.

```
record R \Gamma : Seti where
    constructor mkR
    field fl : A A
    D
    field f2 : A A
mkR:}:\forall{\Gamma}(\mp@subsup{\textrm{f}}{1}{}:\mp@subsup{\textrm{A}}{1}{})\quad(\mathrm{ let D D ) (f)
```


3.32.4 Eta-expansion

The eta (η) rule for a record type

```
record R : Set where
    field
        a : A
        b : B
        c : C
```

states that every $\mathrm{x}: \mathrm{R}$ is definitionally equal torecord $\{\mathrm{a}=\mathrm{R} \cdot \mathrm{a} \mathrm{x} ; \mathrm{b}=\mathrm{R} \cdot \mathrm{b} \mathrm{x} ; \mathrm{c}=\mathrm{R} \cdot \mathrm{c} \mathrm{x}\}$. By default, all (inductive) record types enjoy η-equality if the positivity checker has confirmed it is safe to have it. The keywords eta-equality/no-eta-equality enable/disable η rules for the record type being declared.

3.32.5 Recursive records

Recursive records need to be declared as either inductive or coinductive.

```
record Tree (A : Set) : Set where
    inductive
    constructor tree
    field
        elem : A
        subtrees : List (Tree A)
record Stream (A : Set) : Set where
    coinductive
    constructor _::_
    field
        head : A
        tail : Stream A
```

Inductive records have eta-equality on by default, while no-eta-equality is the default for coinductive records. In fact, the eta-equality and coinductive directives are not allowed together, since this can easily make Agda loop. This can be overridden at your own risk by using the pragma ETA instead.

It is possible to pattern match on inductive records, but not on coinductive ones.
However, inductive records without η-equality do not support both matching on the record constructor and construction of record elements by copattern matching. It has been discovered that the combination of both leads to loss of subject reduction, i.e., reduction does not preserve typing. For records without η, matching on the record constructor is off by default and construction by copattern matching is on. If you want the converse, you can add the record directive pattern:

```
record HereditaryList : Set where
    inductive
    no-eta-equality
    pattern
    field sublists : List HereditaryList
pred : HereditaryList }->\mathrm{ List HereditaryList
pred record{ sublists = ts } = ts
```


3.32.6 Instance fields

Instance fields, that is record fields marked with $\{\}\}$ can be used to model "superclass" dependencies. For example:

```
record Eq (A : Set) : Set where
    field
        _==_ : A }->\textrm{A}->\textrm{BOOL
open Eq {{...}}
```

```
record Ord (A : Set) : Set where
    field
        _<_ : A ->A A Bool
        {{eqA}} : Eq A
open Ord {{...}} hiding (eqA)
```

Now anytime you have a function taking an Ord A argument the Eq A instance is also available by virtue of η expansion. So this works as you would expect:

```
_\leq_ : {A : Set} {{OrdA : Ord A}} }->\textrm{A}->\textrm{A}->\textrm{Bool
x}\leq\textrm{y}=(\textrm{x}==\textrm{y})||(\textrm{x}<\textrm{y}
```

There is a problem however if you have multiple record arguments with conflicting instance fields. For instance, suppose we also have a Num record with an Eq field

```
record Num (A : Set) : Set where
    field
        fromNat : Nat }->\mathrm{ A
        {{eqA}} : Eq A
open Num {{...}} hiding (eqA)
_\leq3: {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} }->\mathrm{ A }->\mathrm{ Bool
x \leq3 = (x == fromNat 3) || (x < fromNat 3)
```

Here the Eq A argument to $=_{=}$is not resolved since there are two conflicting candidates: Ord.eqA OrdA and Num. eqA NumA. To solve this problem you can declare instance fields as overlappable using the overlap keyword:

```
record Ord (A : Set) : Set where
    field
        _<_ : A -> A -> Bool
        overlap {{eqA}} : Eq A
open Ord {{...}} hiding (eqA)
record Num (A : Set) : Set where
    field
        fromNat : Nat -> A
        overlap {{eqA}} : Eq A
open Num {{...}} hiding (eqA)
_\leq3: {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} }->\mathrm{ A }->\mathrm{ Bool
x \leq3 = (x == fromNat 3) || (x < fromNat 3)
```

Whenever there are multiple valid candidates for an instance goal, if all candidates are overlappable, the goal is solved by the left-most candidate. In the example above that means that the Eq A goal is solved by the instance from the Ord argument.

Clauses for instance fields can be omitted when defining values of record types. For instance we can define Nat instances for Eq, Ord and Num as follows, leaving out cases for the eqA fields:

```
instance
    EqNat : Eq Nat
    _==_ {{EqNat}} = Agda.Builtin.Nat._==_
    OrdNat : Ord Nat
    _<_ {{OrdNat}} = Agda.Builtin.Nat._<_
    NumNat : Num Nat
    fromNat {{NumNat}} n = n
```


3.33 Reflection

3.33.1 Builtin types

Names

The built-in QNAME type represents quoted names and comes equipped with equality, ordering, and a show function.

```
postulate Name : Set
{-# BUILTIN QNAME Name #-}
primitive
    primQNameEquality : Name }->\mathrm{ Name }->\mathrm{ Bool
    primQNameLess : Name }->\mathrm{ Name }->\mathrm{ Bool
    primShowQName : Name }->\mathrm{ String
```

The fixity of a name can also be retrived.

```
primitive
    primQNameFixity : Name }->\mathrm{ Fixity
```

To define a decidable propositional equality with the option --safe, one can use the conversion to a pair of built-in 64-bit machine words

```
primitive
    primQNameToWord64s : Name }->\Sigma\mathrm{ Word64 ( }\lambda
```

with the injectivity proof in the Properties module.:

```
primitive
    primQNameToWord64sInjective : }\forall\textrm{a b}->\mathrm{ primQNameToWord64s a 三 primQNameToWord64s b
\hookrightarrow-> a \equivb
```

Name literals are created using the quote keyword and can appear both in terms and in patterns

```
nameOfNat : Name
nameOfNat = quote Nat
isNat : Name }->\mathrm{ Bool
isNat (quote Nat) = true
isNat _ = false
```

Note that the name being quoted must be in scope.

Metavariables

Metavariables are represented by the built-in AGDAMETA type. They have primitive equality, ordering, show, and conversion to Nat:

```
postulate Meta : Set
{-# BUILTIN AGDAMETA Meta #-}
primitive
    primMetaEquality : Meta }->\mathrm{ Meta }->\mathrm{ Bool
    primMetaLess : Meta }->\mathrm{ Meta }->\mathrm{ Bool
```

```
primShowMeta : Meta }->\mathrm{ String
primMetaToNat : Meta }->\mathrm{ Nat
```

Builtin metavariables show up in reflected terms. In Properties, there is a proof of injectivity of primMetaToNat

```
primitive
    primMetaToNatInjective : }\forall\textrm{a} \textrm{b}->\mathrm{ primMetaToNat a 三 primMetaToNat b }->\textrm{a}\equiv\textrm{b
```

which can be used to define a decidable propositional equality with the option --safe.

Literals

Literals are mapped to the built-in AGDALITERAL datatype. Given the appropriate built-in binding for the types Nat, Float, etc, the AGDALITERAL datatype has the following shape:

```
data Literal : Set where
    nat : (n : Nat) }->\mathrm{ Literal
    word64 : (n : Word64) }->\mathrm{ Literal
    float : (x : Float) }->\mathrm{ Literal
    char : (c : Char) }->\mathrm{ Literal
    string : (s : String) }->\mathrm{ Literal
    name : (x : Name) }->\mathrm{ Literal
    meta : (x : Meta) }->\mathrm{ Literal
{-# BUILTIN AGDALITERAL Literal #-}
{-# BUILTIN AGDALITNAT nat #-}
{-# BUILTIN AGDALITWORD64 word64 #-}
{-# BUILTIN AGDALITFLOAT float #-}
{-# BUILTIN AGDALITCHAR char #-}
{-# BUILTIN AGDALITSTRING string #-}
{-# BUILTIN AGDALITQNAME name #-}
{-# BUILTIN AGDALITMETA meta #-}
```


Arguments

Arguments can be (visible), \{hidden $\}$, or $\{\{$ instance $\}\}$:

```
data Visibility : Set where
    visible hidden instance' : Visibility
{-# BUILTIN HIDING Visibility #-}
{-# BUILTIN VISIBLE visible #-}
{-# BUILTIN HIDDEN hidden #-}
{-# BUILTIN INSTANCE instance' #-}
```

Arguments can be relevant or irrelevant:

```
data Relevance : Set where
    relevant irrelevant : Relevance
{-# BUILTIN RELEVANCE Relevance #-}
{-# BUILTIN RELEVANT relevant #-}
{-# BUILTIN IRRELEVANT irrelevant #-}
```

Arguments also have a quantity:

```
data Quantity : Set where
    quantity-0 quantity-\omega : Quantity
{-# BUILTIN QUANTITY Quantity #-}
{-# BUILTIN QUANTITY-0 quantity-0 #-}
{-# BUILTIN QUANTITY-\omega quantity-\omega #-}
```

Relevance and quantity are combined into a modality:

```
data Modality : Set where
    modality : (r : Relevance) (q : Quantity) -> Modality
{-# BUILTIN MODALITY Modality #-}
{-# BUILTIN MODALITY-CONSTRUCTOR modality #-}
```

The visibility and the modality characterise the behaviour of an argument:

```
data ArgInfo : Set where
    arg-info : (v : Visibility) (m : Modality) -> ArgInfo
data Arg (A : Set) : Set where
    arg : (i : ArgInfo) (x : A) }->\mathrm{ Arg A
{-# BUILTIN ARGINFO ArgInfo #-}
{-# BUILTIN ARGARGINFO arg-info #-}
{-# BUILTIN ARG Arg #-}
{-# BUILTIN ARGARG arg #-}
```


Name abstraction

```
data Abs (A : Set) : Set where
    abs : (s : String) (x : A) }->\mathrm{ Abs A
{-# BUILTIN ABS Abs #-}
{-# BUILTIN ABSABS abs #-}
```


Terms

Terms, sorts, patterns, and clauses are mutually recursive and mapped to the AGDATERM, AGDASORT, AGDAPATTERN and AGDACLAUSE built-ins respectively. Types are simply terms. Terms and patterns use de Bruijn indices to represent variables.

```
data Term : Set
data Sort : Set
data Pattern : Set
data Clause : Set
Type = Term
Telescope = List ( }\Sigma\mathrm{ String }\lambda
data Term where
    var : (x : Nat) (args : List (Arg Term)) -> Term
    con : (c : Name) (args : List (Arg Term)) -> Term
```

(continued from previous page)

```
    def : (f: Name) (args : List (Arg Term)) -> Term
    lam : (v : Visibility) (t : Abs Term) -> Term
    pat-lam : (cs : List Clause) (args : List (Arg Term)) -> Term
    pi : (a : Arg Type) (b : Abs Type) -> Term
    agda-sort : (s : Sort) }->\mathrm{ Term
    lit : (l : Literal) -> Term
    meta : (x : Meta) -> List (Arg Term) }->\mathrm{ Term
    unknown : Term -- Treated as '_' when unquoting.
data Sort where
    set : (t : Term) -> Sort -- A Set of a given (possibly neutral) level.
    lit : (n : Nat) }->\mathrm{ Sort -- A Set of a given concrete level.
    prop : (t : Term) -> Sort -- A Prop of a given (possibly neutral) level.
    propLit : (n : Nat) }->\mathrm{ Sort -- A Prop of a given concrete level.
    inf : (n : Nat) -> Sort -- Setwi of a given concrete level i.
    unknown : Sort
data Pattern where
    lll (c: Name) (ps : List (Arg Pattern)) -> Pattern 
data Clause where
    clause : (tel : Telescope) (ps : List (Arg Pattern)) (t : Term) -> Clause
    absurd-clause : (tel : Telescope) (ps : List (Arg Pattern)) -> Clause
{-# BUILTIN AGDATERM Term #-}
{-# BUILTIN AGDASORT Sort #-}
{-# BUILTIN AGDAPATTERN Pattern #-}
{-# BUILTIN AGDACLAUSE Clause #-}
{-# BUILTIN AGDATERMVAR var #-}
{-# BUILTIN AGDATERMCON Con #-}
{-# BUILTIN AGDATERMDEF def #-}
{-# BUILTIN AGDATERMMETA meta #-}
{-# BUILTIN AGDATERMLAM lam #-}
{-# BUILTIN AGDATERMEXTLAM pat-lam #-}
{-# BUILTIN AGDATERMPI pi #-}
{-# BUILTIN AGDATERMSORT agda-sort #-}
{-# BUILTIN AGDATERMLIT lit #-}
{-# BUILTIN AGDATERMUNSUPPORTED unknown #-}
{-# BUILTIN AGDASORTSET set #-}
{-# BUILTIN AGDASORTLIT lit #-}
{-# BUILTIN AGDASORTPROP prop #-}
{-# BUILTIN AGDASORTPROPLIT propLit #-}
{-# BUILTIN AGDASORTINF inf #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}
{-# BUILTIN AGDAPATCON con #-}
{-# BUILTIN AGDAPATDOT dot #-}
{-# BUILTIN AGDAPATVAR var #-}
{-# BUILTIN AGDAPATLIT lit #-}
{-# BUILTIN AGDAPATPROJ proj #-}
```

(continues on next page)

```
{-# BUILTIN AGDAPATABSURD absurd #-}
{-# BUILTIN AGDACLAUSECLAUSE clause #-}
{-# BUILTIN AGDACLAUSEABSURD absurd-clause #-}
```

Absurd lambdas λ () are quoted to extended lambdas with an absurd clause.
The built-in constructors AGDATERMUNSUPPORTED and AGDASORTUNSUPPORTED are translated to meta variables when unquoting.

Declarations

There is a built-in type AGDADEFINITION representing definitions. Values of this type is returned by the AGDATCMGETDEFINITION built-in described below.

```
data Definition : Set where
    function : (cs : List Clause) }->\mathrm{ Definition
    data-type : (pars : Nat) (cs : List Name) -> Definition -- parameters and 
constructors
    record-type : (c : Name) (fs : List (Arg Name)) -> -- c: name of recordL
constructor
                Definition -- fs: fields
    data-cons : (d : Name) }->\mathrm{ Definition -- d: name of data type
    axiom : Definition
    prim-fun : Definition
{-# BUILTIN AGDADEFINITION Definition #-}
{-# BUILTIN AGDADEFINITIONFUNDEF function #-}
{-# BUILTIN AGDADEFINITIONDATADEF data-type #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-conS #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-}
```


Type errors

Type checking computations (see below) can fail with an error, which is a list of ErrorParts. This allows metaprograms to generate nice errors without having to implement pretty printing for reflected terms.

```
-- Error messages can contain embedded names and terms.
data ErrorPart : Set where
    strErr : String -> ErrorPart
    termErr : Term }->\mathrm{ ErrorPart
    nameErr : Name }->\mathrm{ ErrorPart
{-# BUILTIN AGDAERRORPART ErrorPart #-}
{-# BUILTIN AGDAERRORPARTSTRING strErr #-}
{-# BUILTIN AGDAERRORPARTTERM termErr #-}
{-# BUILTIN AGDAERRORPARTNAME nameErr #-}
```


Type checking computations

Metaprograms, i.e. programs that create other programs, run in a built-in type checking monad TC:

```
postulate
    TC : \forall {a} }->\mathrm{ Set a }->\mathrm{ Set a
    returnTC: }\forall{\mathrm{ a} {A : Set a} }->\textrm{A}->\textrm{TC A
    bindTC : }\forall{{\textrm{a b}}{\textrm{A}: Set a} {B: Set b} ->TC A -> (A -> TC B) -> TC B
{-# BUILTIN AGDATCM TC #-}
{-# BUILTIN AGDATCMRETURN returnTC #-}
{-# BUILTIN AGDATCMBIND bindTC #-}
```

The TC monad provides an interface to the Agda type checker using the following primitive operations:

```
postulate
    -- Unify two terms, potentially solving metavariables in the process.
    unify : Term }->\mathrm{ Term }->\mathrm{ TC 丁
    -- Throw a type error. Can be caught by catchTC.
    typeError : }\forall{a} {A : Set a} -> List ErrorPart -> TC A
    -- Block a type checking computation on a metavariable. This will abort
    -- the computation and restart it (from the beginning) when the
    -- metavariable is solved.
    blockOnMeta : }\forall{\mathrm{ a} {A : Set a} }->\mathrm{ Meta }->\mathrm{ TC A
    -- Prevent current solutions of metavariables from being rolled back in
    -- case 'blockOnMeta' is called.
    commitTC : TC T
    -- Backtrack and try the second argument if the first argument throws a
    -- type error.
    catchTC : }\forall{\mathrm{ a} {A : Set a} }->\mathrm{ TC A }->\mathrm{ TCA }->\mathrm{ TC A
    -- Infer the type of a given term
    inferType : Term }->\mathrm{ TC Type
    -- Check a term against a given type. This may resolve implicit arguments
    -- in the term, so a new refined term is returned. Can be used to create
    -- new metavariables: newMeta t = checkType unknown t
    checkType : Term }->\mathrm{ Type }->\mathrm{ TC Term
    -- Compute the normal form of a term.
    normalise : Term }->\mathrm{ TC Term
    -- Compute the weak head normal form of a term.
    reduce : Term }->\mathrm{ TC Term
    -- Get the current context. Returns the context in reverse order, so that
    -- it is indexable by deBruijn index. Note that the types in the context are
    -- valid in the rest of the context. To use in the current context they need
    -- to be weakened by I + their position in the list.
    getContext : TC (List (Arg Type))
    -- Extend the current context with a variable of the given type.
    extendContext : \forall {a} {A : Set a} -> Arg Type }->\mathrm{ TC A }->\mathrm{ TC A
    -- Set the current context. Takes a context telescope entries in
    -- reverse order, as given by `getContext`. Each type should be valid
    -- in the context formed by the remaining elements in the list.
```

```
inContext : }\forall{a} {A: Set a} -> List (Arg Type) -> TC A -> TC A
-- Quote a value, returning the corresponding Term.
quoteTC : }\forall\mathrm{ {a} {A : Set a} }->\textrm{A}->\textrm{AC}\mathrm{ Term
-- Unquote a Term, returning the corresponding value.
unquoteTC : }\forall{\mp@code{a} {A : Set a} }->\mathrm{ Term }->\mathrm{ TC A
-- Quote a value in Setw, returning the corresponding Term
quote\omegaTC : }\forall\mathrm{ {A : Set }\omega}->\textrm{A}->\mathrm{ TC Term
-- Create a fresh name.
freshName : String }->\mathrm{ TC Name
-- Declare a new function of the given type. The function must be defined
-- later using 'defineFun'. Takes an Arg Name to allow declaring instances
-- and irrelevant functions. The Visibility of the Arg must not be hidden.
declareDef : Arg Name }->\mathrm{ Type }->\mathrm{ TC 丁
-- Declare a new postulate of the given type. The Visibility of the Arg
-- must not be hidden. It fails when executed from command-line with --safe
-- option.
declarePostulate : Arg Name }->\mathrm{ Type }->\mathrm{ TC T
-- Define a declared function. The function may have been declared using
-- 'declareDef' or with an explicit type signature in the program.
defineFun : Name }->\mathrm{ List Clause }->\mathrm{ TC 丁
-- Get the type of a defined name. Replaces 'primNameType'.
getType : Name }->\mathrm{ TC Type
-- Get the definition of a defined name. Replaces 'primNameDefinition'.
getDefinition : Name }->\mathrm{ TC Definition
-- Check if a name refers to a macro
isMacro : Name }->\mathrm{ TC Bool
-- Change the behaviour of inferType, checkType, quoteTC, getContext
-- to normalise (or not) their results. The default behaviour is no
-- normalisation.
withNormalisation : }\forall{a} {A : Set a} -> Bool -> TC A -> TC A
-- Prints the third argument to the debug buffer in Emacs
-- if the verbosity level (set by the -v flag to Agda)
-- is higher than the second argument. Note that Level }0\mathrm{ and I are printed
-- to the info buffer instead. For instance, giving -v a.b.c:lo enables
-- printing from debugPrint "a.b.c.d" 10 msg.
debugPrint : String -> Nat -> List ErrorPart -> TC T
-- Only allow reduction of specific definitions while executing the TC computation
onlyReduceDefs : }\forall\mathrm{ {a} {A : Set a} }->\mathrm{ List Name }->\mathrm{ TC A }->\mathrm{ TC A
-- Don't allow reduction of specific definitions while executing the TC computation
dontReduceDefs : }\forall\mathrm{ {a} {A : Set a} }->\mathrm{ List Name }->\mathrm{ TC A }->\mathrm{ TC A
-- Makes the following primitives to reconstruct hidden parameters:
-- getDefinition, normalise, reduce, inferType, checkType and getcontext
```

(continues on next page)
(continued from previous page)

```
    withReconstructed : \forall {a} {A : Set a} -> TC A }->\mathrm{ TC A
    -- Fail if the given computation gives rise to new, unsolved
    -- "blocking" constraints.
    noConstraints: }\forall\mathrm{ {a} {A : Set a} }->\mathrm{ TC A }->\mathrm{ TC A
    -- Run the given TC action and return the first component. Resets to
    -- the old TC state if the second component is 'false', or keep the
    -- new TC state if it is 'true'.
    runSpeculative : }\forall{\textrm{a}} {\textrm{A}: Set a} -> TC (\SigmaA \lambda_ -> Bool) -> TC A
{-# BUILTIN AGDATCMUNIFY unify #-}
{-# BUILTIN AGDATCMTYPEERROR
{-# BUILTIN AGDATCMBLOCKONMETA
{-# BUILTIN AGDATCMCATCHERROR
{-# BUILTIN AGDATCMINFERTYPE inferType #-}
{-# BUILTIN AGDATCMCHECKTYPE checkType #-}
{-# BUILTIN AGDATCMNORMALISE normalise #-}
{-# BUILTIN AGDATCMREDUCE reduce #-}
{-# BUILTIN AGDATCMGETCONTEXT
{-# BUILTIN AGDATCMEXTENDCONTEXT
{-# BUILTIN AGDATCMINCONTEXT
{-# BUILTIN AGDATCMQUOTETERM
{-# BUILTIN AGDATCMUNQUOTETERM
{-# BUILTIN AGDATCMQUOTEOMEGATERM
{-# BUILTIN AGDATCMFRESHNAME
{-# BUILTIN AGDATCMDECLAREDEF
{-# BUILTIN AGDATCMDECLAREPOSTULATE
{-# BUILTIN AGDATCMDEFINEFUN
{-# BUILTIN AGDATCMGETTYPE
{-# BUILTIN AGDATCMGETDEFINITION
{-# BUILTIN AGDATCMCOMMIT
{-# BUILTIN AGDATCMISMACRO
{-# BUILTIN AGDATCMWITHNORMALISATION
{-# BUILTIN AGDATCMDEBUGPRINT
{-# BUILTIN AGDATCMONLYREDUCEDEFS
{-# BUILTIN AGDATCMDONTREDUCEDEFS
{-# BUILTIN AGDATCMNOCONSTRAINTS noConstraints #-}
{-# BUILTIN AGDATCMRUNSPECULATIVE runSpeculative #-}
unify 
-catchTC
    getContext #-}
    extendContext #-}
    inContext #-}
    quoteTC #-}
    unquoteTC #-}
    quotewTC #-}
{-# BUILIIN AGDAICMF RESHNAME
    freshName #-}
    declareDef #-}
    declarePostulate #-}
    defineFun #-}
    getType #-}
    getDefinition #-}
    commitTC #-}
    isMacro #-}
    withNormalisation #-}
    debugPrint #-}
    onlyReduceDefs #-}
    dontReduceDefs #-}
```


3.33.2 Metaprogramming

There are three ways to run a metaprogram (TC computation). To run a metaprogram in a term position you use a macro. To run metaprograms to create top-level definitions you can use the unquoteDecl and unquoteDef primitives (see Unquoting Declarations).

Macros

Macros are functions of type $\mathrm{t}_{1} \rightarrow \mathrm{t}_{2} \rightarrow \ldots \rightarrow$ Term \rightarrow TC T that are defined in a macro block. The last argument is supplied by the type checker and will be the representation of a metavariable that should be instantiated with the result of the macro.

Macro application is guided by the type of the macro, where Term and Name arguments are quoted before passed to the macro. Arguments of any other type are preserved as-is.

For example, the macro application $f u v w$ where $f: T e r m \rightarrow$ Name \rightarrow Bool \rightarrow Term \rightarrow TC \top desugars into:

```
unquote (f (quoteTerm u) (quote v) w)
```

where quoteTerm u takes a u of arbitrary type and returns its representation in the Term data type, and unquote m runs a computation in the TC monad. Specifically, when checking unquote m : A for some type A the type checker proceeds as follows:

- Check m : Term \rightarrow TC \top.
- Create a fresh metavariable hole : A.
- Let qhole : Term be the quoted representation of hole.
- Execute m qhole.
- Return (the now hopefully instantiated) hole.

Reflected macro calls are constructed using the def constructor, so given a macro g : Term \rightarrow TC \top the term def (quote g) [] unquotes to a macro call to g.

Note: The quoteTerm and unquote primitives are available in the language, but it is recommended to avoid using them in favour of macros.

Limitations:

- Macros cannot be recursive. This can be worked around by defining the recursive function outside the macro block and have the macro call the recursive function.

Silly example:

```
macro
    plus-to-times : Term }->\mathrm{ Term }->\mathrm{ TC T
    plus-to-times (def (quote _+_) (a :: b :: [])) hole =
        unify hole (def (quote _*_) (a :: b :: []))
    plus-to-times v hole = unify hole v
thm : (a b : Nat) -> plus-to-times (a + b) \equiv a * b
thm a b = refl
```

Macros lets you write tactics that can be applied without any syntactic overhead. For instance, suppose you have a solver:

```
magic : Type }->\mathrm{ Term
```

that takes a reflected goal and outputs a proof (when successful). You can then define the following macro:

```
macro
    by-magic : Term }->\mathrm{ TC 丁
    by-magic hole =
        bindTC (inferType hole) \lambda goal }
        unify hole (magic goal)
```

This lets you apply the magic tactic as a normal function:

```
thm : \neg P \equiv NP
thm = by-magic
```


Tactic Arguments

You can declare tactics to be used to solve a particular implicit argument using a @ (tactic t) annotation. The provided tactic should be a term $t:$ Term \rightarrow TC \top. For instance,

```
defaultTo : {A : Set} (x : A) }->\mathrm{ Term }->\mathrm{ TC 丁
defaultTo x hole = bindTC (quoteTC x) (unify hole)
f : {@(tactic defaultTo true) x : Bool} -> Bool
f {x} = x
test-f : f \equiv true
test-f = refl
```

At calls to f, defaultTo true is called on the metavariable inserted for x if it is not given explicitly. The tactic can depend on previous arguments to the function. For instance,

```
g : (x : Nat) {@(tactic defaultTo x) y : Nat} -> Nat
g x {y} = x + y
test-g : g 4 三 8
test-g = refl
```

Record fields can also be annotated with a tactic, allowing them to be omitted in constructor applications, record constructions and co-pattern matches:

```
record Bools : Set where
    constructor mkBools
    field fst : Bool
                        @(tactic defaultTo fst) {snd} : Bool
open Bools
tto tti tt2 tt3 : Bools
tto = mkBools true {true}
tt 
tt 2 = record{ fst = true }
tt3 .fst = true
test-tt : tt 1 :: tt 2 :: tt m :: [] \equiv tto :: tt0 :: tto :: []
test-tt = refl
```


Unquoting Declarations

While macros let you write metaprograms to create terms, it is also useful to be able to create top-level definitions. You can do this from a macro using the declareDef and defineFun primitives, but there is no way to bring such definitions into scope. For this purpose there are two top-level primitives unquoteDecl and unquoteDef that runs a TC computation in a declaration position. They both have the same form:

```
unquoteDecl }\mp@subsup{x}{1}{}\ldots\mp@subsup{x}{n}{}=
unquoteDef }\mp@subsup{\textrm{x}}{1}{}\ldots\mp@subsup{\textrm{x}}{n}{}=
```

except that the list of names can be empty for unquoteDecl, but not for unquoteDef. In both cases m should have type TC T. The main difference between the two is that unquoteDecl requires m to both declare (with declareDef) and define (with defineFun) the x_{i} whereas unquoteDef expects the x_{i} to be already declared. In other words, unquoteDecl brings the x_{i} into scope, but unquoteDef requires them to already be in scope.

In m the x_{i} stand for the names of the functions being defined (i.e. $x_{i}: \quad$ Name) rather than the actual functions.

One advantage of unquoteDef over unquoteDecl is that unquoteDef is allowed in mutual blocks, allowing mutually recursion between generated definitions and hand-written definitions.

Example usage:

```
arg' : {A : Set} -> Visibility }->\mathrm{ A }->\mathrm{ Arg A
arg' v = arg (arg-info v (modality relevant quantity-\omega))
-- Defining: id-name {A} x = x
defId : (id-name : Name) }->\mathrm{ TC T
defId id-name = do
    defineFun id-name
        [ clause
            ( ("A" , arg' visible (agda-sort (lit 0)))
            :: ("x" , arg' visible (var 0 []))
            :: [])
            ( arg' hidden (var 1)
            :: arg' visible (var 0)
            :: [] )
            (var 0 [])
        ]
id : {A : Set} (x : A) }->\mathrm{ A
unquoteDef id = defId id
mkId : (id-name : Name) }->\mathrm{ TC }
mkId id-name = do
    ty & quoteTC ({A : Set} (x : A) }->\mathrm{ A)
    declareDef (arg' visible id-name) ty
    defId id-name
unquoteDecl id' = mkId id'
```


System Calls

It is possible to run system calls as part of a metaprogram, using the exectc builtin. You can use this feature to implement type providers, or to call external solvers. For instance, the following example calls /bin/echo from Agda:

```
postulate
    execTC : (exe : String) (args : List String) (stdIn : String)
        TC (\Sigma Nat ( }\mp@subsup{\lambda}{~}{}->\Sigma\mathrm{ String ( }\mp@subsup{\lambda}{~}{}->\mathrm{ String)))
{-# BUILTIN AGDATCMEXEC execTC #-}
macro
    echo : List String -> Term }->\mathrm{ TC 丁
    echo args hole = do
        (exitCode , (stdOut , stdErr)) \leftarrow execTC "echo" args ""
        unify hole (lit (string stdOut))
_ : echo ("hello" :: "world" :: []) \equiv "hello world\n"
_ = refl
```

The execTC builtin takes three arguments: the basename of the executable (e.g., "echo"), a list of arguments, and the contents of the standard input. It returns a triple, consisting of the exit code (as a natural number), the contents of the standard output, and the contents of the standard error.

It would be ill-advised to allow Agda to make arbitrary system calls. Hence, the feature must be activated by passing the --allow-exec option, either on the command-line or using a pragma. (Note that --allow-exec is incompatible with --safe.) Furthermore, Agda can only call executables which are listed in the list of trusted executables, ~/ . agda/executables. For instance, to run the example above, you must add /bin/echo to this file:

```
# contents of ~/.agda/executables
/bin/echo
```

The executable can then be called by passing its basename to execTC, subtracting the . exe on Windows.

3.34 Rewriting

Rewrite rules allow you to extend Agda's evaluation relation with new computation rules.

Note: This page is about the --rewriting option and the associated REWRITE builtin. You might be looking for the documentation on the rewrite construct instead.

3.34.1 Rewrite rules by example

To enable rewrite rules, you should run Agda with the flag --rewriting and import the modules Agda. Builtin.Equality and Agda. Builtin.Equality.Rewrite:

```
{-# OPTIONS --rewriting #-}
module language.rewriting where
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
```


Overlapping pattern matching

To start, let's look at an example where rewrite rules can solve a problem that is encountered by almost every newcomer to Agda. This problem usually pops up as the question why $0+m$ computes to m, but $m+0$ does not (and similarly, (suc m) + n computes to suc $(m+n$) but $m+(\operatorname{suc} n$) does not). This problem manifests itself for example when trying to prove commutativity of _+_:

```
+comm:m + n \equivn + m
+comm {m = zero} = refl
+comm {m= suc m}= cong suc (+comm {m=m})
```

Here, Agda complains that $n!=n+$ zero of type Nat. The usual way to solve this problem is by proving the equations $m+0 \equiv m$ and $m+(\operatorname{suc} n) \equiv \operatorname{suc}(m+n)$ and using an explicit rewrite statement in the main proof (N.B.: Agda's rewrite keyword should not be confused with rewrite rules, which are added by a REWRITE pragma.)

By using rewrite rules, we can simulate the solution from our paper. First, we need to prove that the equations we want hold as propositional equalities:

```
+zero : m + zero \equiv m
+zero {m= zero} = refl
+zero {m= suc m}= cong suc +zero
+suc : m + (suc n) \equiv suc (m + n)
+suc {m= zero} = refl
+suc {m= suc m}=cong suc +suc
```

Next we mark the equalities as rewrite rules with a REWRITE pragma:

```
{-# REWRITE +zero +suc #-}
```

Now the proof of commutativity works exactly as we wrote it before:

```
+comm:m + n \equivn + m
+comm {m = zero} = refl
+comm {m= suc m}= cong suc (+comm {m=m})
```

Note that there is no way to make this proof go through without rewrite rules: it is essential that _+_ computes both on its first and its second argument, but there's no way to define _ + _ in such a way using Agda's regular pattern matching.

More examples

Additional examples of how to use rewrite rules can be found in a blog post by Jesper Cockx.

3.34.2 General shape of rewrite rules

In general, an equality proof eq may be registered as a rewrite rule using the pragma \{-\# REWRITE eq \#-\}, provided the following requirements are met:

- The type of eq is of the form eq : ($\left.\mathrm{x}_{1}: \mathrm{A}_{1}\right) \ldots\left(\mathrm{x}_{k}: \mathrm{A}_{k}\right) \rightarrow \mathrm{f} \mathrm{p}_{1} \ldots \mathrm{p}_{n} \equiv \mathrm{v}$
- f is a postulate, a defined function symbol, or a constructor applied to fully general parameters (i.e. the parameters must be distinct variables)
- Each variable $\mathrm{x}_{1}, \ldots, \mathrm{x}_{k}$ occurs at least once in a pattern position in $\mathrm{p}_{1} \ldots \mathrm{p}_{n}$ (see below for the definition of pattern positions)
- The left-hand side $f p_{1} \ldots p_{n}$ should be neutral, i.e. it should not reduce.

The following patterns are supported:

- $\mathrm{x} \mathrm{y}_{1} \ldots \mathrm{y}_{n}$, where x is a pattern variable and $\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}$ are distinct variables that are bound locally in the pattern
- $f p_{1} \ldots p_{n}$, where f is a postulate, a defined function, a constructor, or a data/record type, and p_{1}, \ldots, p_{n} are again patterns
- $\lambda \mathrm{x} \rightarrow \mathrm{p}$, where p is again a pattern
- $(x: P) \rightarrow Q$, where P and Q are again patterns
- y $p_{1} \ldots p_{n}$, where y is a variable bound locally in the pattern and p_{1}, \ldots, p_{n} are again patterns
- Set p or Prop p, where p is again a pattern
- Any other term v (here the variables in v are not considered to be in a pattern position)

Once a rewrite rule has been added, Agda automatically rewrites all instances of the left-hand side to the corresponding instance of the right-hand side during reduction. More precisely, a term (definitionally equal to) $£ \mathrm{p}_{1} \sigma \ldots \mathrm{p}_{n} \sigma$ is rewritten to $\mathrm{v} \sigma$, where σ is any substitution on the pattern variables $\mathrm{x}_{1}, \ldots \mathrm{x}_{k}$.
Since rewriting happens after normal reduction, rewrite rules are only applied to terms that would otherwise be neutral.

3.34.3 Confluence checking

Agda can optionally check confluence of rewrite rules by enabling the --confluence-check flag. Concretely, it does so by enforcing two properties:

1. For any two left-hand sides of the rewrite rules that overlap (either at the root position or at a subterm), the most general unifier of the two left-hand sides is again a left-hand side of a rewrite rule. For example, if there are two rules suc $m+n=\operatorname{suc}(m+n)$ and $m+\operatorname{suc} n=\operatorname{suc}(m+n)$, then there should also be a rule suc $m+\operatorname{suc} n=\operatorname{suc}(\operatorname{suc}(m+n))$.
2. Each rewrite rule should satisfy the triangle property: For any rewrite rule $u=w$ and any single-step parallel unfolding $u=>v$, we should have another single-step parallel unfolding $v=>\mathrm{w}$.

There is also a flag --local-confluence-check that is less restrictive but only checks local confluence of rewrite rules. In case the rewrite rules are terminating (currently not checked), these two properties are equivalent.

3.34.4 Advanced usage

Instead of importing Agda. Builtin. Equality. Rewrite, a different type may be chosen as the rewrite relation by registering it as the REWRITE builtin. For example, using the pragma \{-\# BUILTIN REWRITE _~_ \#- \} registers the type _~_ as the rewrite relation. To qualify as the rewrite relation, the type must take at least two arguments, and the final two arguments should be visible.

3.35 Run-time Irrelevance

From version 2.6.1 Agda supports run-time irrelevance (or erasure) annotations. Values marked as erased are not present at run time, and consequently the type checker enforces that no computations depend on erased values.

3.35.1 Syntax

A function or constructor argument is declared erased using the @ 0 or @erased annotation. For example, the following definition of vectors guarantees that the length argument to _::_ is not present at runtime:

```
data Vec (A : Set a) : @O Nat }->\mathrm{ Set a where
    [] : Vec A 0
    _:_: }\forall{{@0n}->A->Vec A n -> Vec A (suc n)
```

The GHC backend compiles this to a datatype where the cons constructor takes only two arguments.

Note: In this particular case, the compiler identifies that the length argument can be erased also without the annotation, using Brady et al's forcing analysis [1]. Marking it erased explictly, however, ensures that it is erased without relying on the analysis.

Erasure annotations can also appear in function arguments (both first-order and higher-order). For instance, here is an implementation of foldl on vectors:

```
foldl : (B : @0 Nat }->\mathrm{ Set b)
```



```
    |(z : B 0)
    -> \forall{@O n} }->\mathrm{ Vec A n }->\textrm{B n
foldl B f z [] = z
```


Here the length arguments to foldl and to f have been marked erased. As a result it gets compiled to the following Haskell code (modulo renaming):

```
foldl f z xs
    = case xs of
        [] -> z
        x :: xs -> foldl f (f _ z x) xs
```

In contrast to constructor arguments, erased arguments to higher-order functions are not removed completely, but instead replaced by a placeholder value _. The crucial optimization enabled by the erasure annotation is compiling $\lambda\{\mathrm{n}\} \rightarrow \mathrm{f}\{$ suc n$\}$ to simply f , removing a terrible space leak from the program. Compare to the result of compiling without erasure:

```
foldl f z xs
    = case xs of
        [] -> z
        x :: xs -> foldl (\ n -> f (1 + n)) (f 0 z x) xs
```

It is also possible to mark top-level definitions as erased. This guarantees that they are only used in erased arguments and can be useful to ensure that code intended only for compile-time evaluation is not executed at run time. (One can also use erased things in the bodies of erased definitions.) For instance,

```
@0 spec : Nat }->\mathrm{ Nat -- slow, but easy to verify
impl : Nat }->\mathrm{ Nat -- fast, but hard to understand
proof : }\forall\textrm{n}->\mathrm{ spec n 
```

Erased record fields become erased arguments to the record constructor and the projection functions are treated as erased definitions.

Constructors can also be marked as erased. Here is one example:

```
Is-proposition : Set a }->\mathrm{ Set a
Is-proposition A = (x y : A) }->\textrm{x}\equiv\textrm{X
data |_|| (A : Set a) : Set a where
    |_| : A -> | A |
    @O trivial : Is-proposition || A ||
rec : @0 Is-proposition B -> (A -> B) ->| A | -> B
rec p f | x | = f x
rec p f (trivial x y i) = p (rec p f x) (rec p f y) i
```

In the code above the constructor trivial is only available at compile-time, whereas $\left.\right|_{-} \mid$is also available at run-time. Clauses that match on erased constructors in non-erased positions are omitted by (at least some) compiler backends, so one can use erased names in the bodies of such clauses. (There is an exception for constructors that were not declared as erased, but that are treated as erased because they were defined using Cubical Agda, and are used in a module that uses the option --erased-cubical.)

3.35.2 Rules

The typing rules are based on Conor McBride's "I Got Plenty o'Nuttin'" [2] and Bob Atkey's "The Syntax and Semantics of Quantitative Type Theory" [3]. In essence the type checker keeps track of whether it is running in runtime mode, checking something that is needed at run time, or compile-time mode, checking something that will be erased. In compile-time mode everything to do with erasure can safely be ignored, but in run-time mode the following restrictions apply:

- Cannot use erased variables or definitions.
- Cannot pattern match on erased arguments, unless there is at most one valid case (not counting erased constructors). If -- without $-K$ is enabled and there is one valid case, then the datatype must also not be indexed.

Consider the function foo taking an erased vector argument:

```
foo: (n : Nat) (@0 xs : Vec Nat n) }->\mathrm{ Nat
foo zero [] = 0
foo (suc n) (x :: xs) = foo n xs
```

This is okay (when the K rule is on), since after matching on the length, the matching on the vector does not provide any computational information, and any variables in the pattern (x and $x s$ in this case) are marked erased in turn. On the other hand, if we don't match on the length first, the type checker complains:

```
foo: (n : Nat) (@0 xs : Vec Nat n) -> Nat
foo n [] =0
foo n (x :: xs) = foo _ xs
-- Error: Cannot branch on erased argument of datatype Vec Nat n
```

The type checker enters compile-time mode when

- checking erased arguments to a constructor or function,
- checking the body of an erased definition,
- checking the body of a clause that matches on an erased constructor,
- checking the domain of an erased Π type, or
- checking a type, i.e. when moving to the right of a :, with some exceptions:
- Compile-time mode is not entered for the domains of non-erased Π types.
- If the K rule is off then compile-time mode is not entered for non-erased constructors (of fibrant type) or record fields.

Note that the type checker does not enter compile-time mode based on the type a term is checked against (except that a distinction is sometimes made between fibrant and non-fibrant types). In particular, checking a term against Set does not trigger compile-time mode.

3.35.3 Subtyping of runtime-irrelevant function spaces

Normally, if $\mathrm{f}:(\mathrm{CO} \mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B}$ then we have $\lambda \mathrm{x} \rightarrow \mathrm{f} \mathrm{x}: \quad(\mathrm{x}: \mathrm{A}) \rightarrow \mathrm{B}$ but not $\mathrm{f}:(\mathrm{x}$ $: A$) \rightarrow B. When the option --subtyping is enabled, Agda will make use of the subtyping rule (@0 x :
A) $\rightarrow B<:(x: A) \rightarrow B$, so there is no need for eta-expanding the function f.

3.35.4 References

[1] Brady, Edwin, Conor McBride, and James McKinna. "Inductive Families Need Not Store Their Indices." International Workshop on Types for Proofs and Programs. Springer, Berlin, Heidelberg, 2003.
[2] McBride, Conor. "I Got Plenty o'Nuttin'." A List of Successes That Can Change the World. Springer, Cham, 2016.
[3] Atkey, Robert. "The Syntax and Semantics of Quantitative Type Theory". In LICS '18: Oxford, United Kingdom. 2018.

3.36 Safe Agda

By using the option --safe (as a pragma option, or on the command-line), a user can specify that Agda should ensure that features leading to possible inconsistencies should be disabled.

Here is a list of the features --safe is incompatible with:

- postulate; can be used to assume any axiom.
- --allow-unsolved-metas; forces Agda to accept unfinished proofs.
- --allow-incomplete-matches; forces Agda to accept unfinished proofs.
- --no-positivity-check; makes it possible to write non-terminating programs by structural "induction" on non strictly positive datatypes.
- --no-termination-check; gives loopy programs any type.
- --type-in-type and --omega-in-omega; allow the user to encode the Girard-Hurken paradox.
- --injective-type-constructors; together with excluded middle leads to an inconsistency via ChungKil Hur's construction.
- --guardedness together with --sized-types; currently can be used to define a type which is both inductive and coinductive, which leads to an inconsistency. This might be fixed in the future.
- --experimental-irrelevance and --irrelevant-projections; enables potentially unsound irrelevance features (irrelevant levels, irrelevant data matching, and projection of irrelevant record fields, respectively).
- --rewriting; turns any equation into one that holds definitionally. It can at the very least break convergence.
- --cubical together with --with-K; the univalence axiom is provable using cubical constructions, which falsifies the K axiom.
- The primEraseEquality primitive together with --without-K; using primEraseEquality, one can derive the K axiom.
- --allow-exec; allows system calls during type checking.

The option --safe is coinfective (see Consistency checking of options used); if a module is declared safe, then all its imported modules must also be declared safe.

Note: The --guardedness and --sized-types options are both on by default. However, unless they have been set explicitly by the user, setting the --safe option will turn them both off. That is to say that

```
{-# OPTIONS --safe #-}
```

will correspond to--safe, --no-guardedness, and --no-sized-types. When both

```
{-# OPTIONS --safe --guardedness #-}
```

and

```
{-# OPTIONS --guardedness --safe #-}
```

will turn on --safe, --guardedness, and --no-sized-types.
Setting both $--s i z e d-t y p e s$ and --guardedness whilst demanding that the module is $--s a f e$ will lead to an error as combining these options currently is inconsistent.

3.37 Sized Types

Note: This is a stub.

Sizes help the termination checker by tracking the depth of data structures across definition boundaries.
The built-in combinators for sizes are described in Sized types.

3.37.1 Example for coinduction: finite languages

See Abel 2017 and Traytel 2017.
Decidable languages can be represented as infinite trees. Each node has as many children as the number of characters in the alphabet A. Each path from the root of the tree to a node determines a possible word in the language. Each node has a boolean label, which is true if and only if the word corresponding to that node is in the language. In particular, the root node of the tree is labelled true if and only if the word ϵ belongs to the language.

These infinite trees can be represented as the following coinductive data-type:

```
record Lang (i : Size) (A : Set) : Set where
    coinductive
    field
        \nu : Bool
        \delta: }\forall{j: Size< i} ->A A Lang j A
open Lang
```

As we said before, given a language $a \quad \operatorname{Lang} A, \nu a \equiv \operatorname{true} \operatorname{iff} \epsilon \in a$. On the other hand, the language δ a x : Lang A is the Brzozowski derivative of a with respect to the character x , that is, $\mathrm{w} \in \delta \mathrm{a} \mathrm{x}$ iff $\mathrm{xw} \in$ a.

With this data type, we can define some regular languages. The first one, the empty language, contains no words; so all the nodes are labelled false:

```
\emptyset : \forall \{ i ~ A ~ \} ~ \rightarrow ~ L a n g ~ i ~ A ~
\nu\emptyset = false
\delta\emptyset_= = 
```

The second one is the language containing a single word; the empty word. The root node is labelled $t r u e$, and all the others are labelled false:

```
\epsilon: }\forall\mathrm{ {i A} }->\mathrm{ Lang i A
\nu\epsilon = true
\delta\epsilon_=\emptyset
```

To compute the union (or sum) of two languages, we do a point-wise or operation on the labels of their nodes:

```
_+_: }\forall\mathrm{ { i A } }->\mathrm{ Lang i A }->\mathrm{ Lang i A }->\mathrm{ Lang i A
\nu(a+b) = \nu a }\quad\vee\nu\textrm{b
\delta(a}+\textrm{b})\textrm{x}=\delta\textrm{a}\textrm{x}+\delta\textrm{b}\textrm{x
infixl 10 _+_
```

Now, lets define concatenation. The base case (ν) is straightforward: $\epsilon \in \mathrm{a}$. b iff $\epsilon \in \mathrm{a}$ and $\epsilon \in \mathrm{b}$.
For the derivative (δ), assume that we have a word $\mathrm{w}, \mathrm{w} \in \delta(\mathrm{a} \cdot \mathrm{b}) \mathrm{x}$. This means that $\mathrm{xw}=\alpha \beta$, with $\alpha \in \mathrm{a}$ and $\beta \in \mathrm{b}$.

We have to consider two cases:

1. $\epsilon \in$ a. Then, either:

- $\alpha=\epsilon$, and $\beta=\mathrm{xw}$, where $\mathrm{w} \in \delta \mathrm{b}$ x.
- $\alpha=\mathrm{x} \alpha^{\prime}$, with $\alpha^{\prime} \in \delta \mathrm{a} \mathrm{x}$, and $\mathrm{w}=\alpha^{\prime} \beta \in \delta \mathrm{a} \mathrm{x} \cdot \mathrm{b}$.

2. $\epsilon \notin$ a. Then, only the second case above is possible:

- $\alpha=\mathrm{x} \alpha^{\prime}$, with $\alpha^{\prime} \in \delta \mathrm{a} \mathrm{x}$, and $\mathrm{w}=\alpha^{\prime} \beta \in \delta \mathrm{a} \mathrm{x} \cdot \mathrm{b}$.

```
_-_: }\forall\mathrm{ { i A } }->\mathrm{ Lang i A }->\mathrm{ Lang i A }->\mathrm{ Lang i A
\nu (a b b) = \nu a }\\nu b b
\delta(a \cdot b) x = if \nu a then \delta a x b b + \delta b x else \delta a x b b
infixl 20 _-_
```

Here is where sized types really shine. Without sized types, the termination checker would not be able to recognize that ${ }^{+}$_ or if_then_else are not inspecting the tree, which could render the definition non-productive. By contrast, with sized types, we know that the $\mathrm{a}+\mathrm{b}$ is defined to the same depth as a and b are.
In a similar spirit, we can define the Kleene star:

```
_* : \forall {i A } }->\mathrm{ Lang i A }->\mathrm{ Lang i A
\nu (a *) = true
\delta (a *) x = \delta a x | a *
infixl 30 _*
```

Again, because the types tell us that _${ }^{-}$preserves the size of its inputs, we can have the recursive call to a $*$ under a function call to _._.

Testing

First, we want to give a precise notion of membership in a language. We consider a word as a List of characters.

```
_\in_ : }\forall\mathrm{ {i} {A} }->\mathrm{ List i A }->\mathrm{ Lang i A }->\mathrm{ Bool
[] }\ina=\nu
(x :: w) }\in\textrm{a}=\textrm{w}\in\delta\textrm{a}
```

Note how the size of the word we test for membership cannot be larger than the depth to which the language tree is defined.

If we want to use regular, non-sized lists, we need to ask for the language to have size ∞.

```
_\in_ : }\forall{A}->\mathrm{ List A }->\mathrm{ Lang }\infty\mathrm{ A }->\mathrm{ Bool
[] }\ina=\nu
(x :: w) }\in\textrm{a}=\textrm{w}\in\delta\textrm{a}
```

Intuitively, ∞ is a Size larger than the size of any term than one could possibly define in Agda.
Now, let's consider binary strings as words. First, we define the languages $\llbracket x \rrbracket$ containing the single word "x" of length 1, for alphabet $\mathrm{A}=\mathrm{BoOl}$:

```
[_]: }\forall\mathrm{ {i} }->\mathrm{ Bool }->\mathrm{ Lang i Bool
\nu\llbracket | = false
\delta | false | false = \epsilon
\delta\llbracket true\rrbracket true =\epsilon
\delta 【 false | true = \emptyset
\delta【 true\rrbracket false = \emptyset
```

Now we can define the bip-bop language, consisting of strings of even length alternating letters "true" and "false".

```
bip-bop = (\llbracket true \rrbracket | \llbracket false \rrbracket)*
```

Let's test a few words for membership in the language bip-bop!

```
test. : (true :: false :: true :: false :: true :: false :: []) \in bip-bop \equiv true
\mp@subsup{test}{1}{\prime}= refl
test2 : (true :: false :: true :: false :: true :: []) \in bip-bop \equiv false
test 2 = refl
test 3 : (true :: true :: false :: []) \in bip-bop \equiv false
\mp@subsup{test}{3}{\prime}= refl
```


3.37.2 References

Equational Reasoning about Formal Languages in Coalgebraic Style, Andreas Abel.
Formal Languages, Formally and Coinductively, Dmitriy Traytel, LMCS Vol. 13(3:28)2017, pp. 1-22 (2017).

3.38 Sort System

Sorts (also known as universes) are types whose members themselves are again types. The fundamental sort in Agda is named Set and it denotes the universe of small types. But for some applications, other sorts are needed. This page explains the need for additional sorts and describes all the sorts that are used by Agda.

3.38.1 Introduction to universes

Russell's paradox implies that the collection of all sets is not itself a set. Namely, if there were such a set U , then one could form the subset $A \subseteq U$ of all sets that do not contain themselves. Then we would have $A \in A$ if and only if A $\notin A$, a contradiction.

Likewise, Martin-Löf's type theory had originally a rule Set : Set but Girard showed that it is inconsistent. This result is known as Girard's paradox. Hence, not every Agda type is a Set. For example, we have

```
Bool : Set
Nat : Set
```

but not Set : Set. However, it is often convenient for Set to have a type of its own, and so in Agda, it is given the type Set_{1} :

```
Set : Set }\mp@subsup{}{1}{
```

In many ways, expressions of type $S e t_{1}$ behave just like expressions of type Set; for example, they can be used as types of other things. However, the elements of Set_{1} are potentially larger; when $\mathrm{A}: \mathrm{Set}_{1}$, then A is sometimes called a large set. In turn, we have

```
Set}\mp@subsup{}{1}{}:\mp@subsup{\mathrm{ Set }}{2}{
Set}2 : Set 3
```

and so on. A type whose elements are types is called a sort or a universe; Agda provides an infinite number of universes $\operatorname{Set}, \operatorname{Set}_{1}, \operatorname{Set}_{2}, \operatorname{Set}_{3}, \ldots$, each of which is an element of the next one. In fact, Set itself is just an abbreviation for Set_{0}. The subscript n is called the level of the universe Set_{n}.

Note: You can also write Set1, Set2, etc., instead of $\operatorname{Set}_{1}, \operatorname{Set}_{2}$. To enter a subscript in the Emacs mode, type "_1".

Universe example

So why are universes useful? Because sometimes it is necessary to define, and prove theorems about, functions that operate not just on sets but on large sets. In fact, most Agda users sooner or later experience an error message where Agda complains that $\operatorname{Set}_{1}!=$ Set. These errors usually mean that a small set was used where a large one was expected, or vice versa.

For example, suppose you have defined the usual datatypes for lists and cartesian products:

```
data List (A : Set) : Set where
    [] : List A
    _::_ : A }->\mathrm{ List A }->\mathrm{ List A
data _ ×_ (A B : Set) : Set where
_\prime_ : A }->\textrm{B}->\textrm{A}\times\textrm{B
infixr 5 _::_
infixr 4 _r-
infixr 2 _×_
```

Now suppose you would like to define an operator Prod that inputs a list of n sets and takes their cartesian product, like this:

```
Prod (A : : B :: C : [] ) = A }\times\textrm{B}\times\textrm{C
```

There is only one small problem with this definition. The type of Prod should be

```
Prod : List Set }->\mathrm{ Set
```

However, the definition of List A specified that A had to be a Set. Therefore, List Set is not a valid type. The solution is to define a special version of the List operator that works for large sets:

```
data List
    [] : List1 A
    _::_ : A }->\mp@subsup{\mathrm{ List }}{1}{}A->\mp@subsup{\mathrm{ List }}{1}{}\mathrm{ A
```

With this, we can indeed define:

```
Prod : List }\mp@subsup{}{1}{}\mathrm{ Set }->\mathrm{ Set
Prod [] = T
Prod (A : : As) = A }\times\mathrm{ Prod As
```


Universe polymorphism

To allow definitions of functions and datatypes that work for all possible universes Set_{i}, Agda provides a type Level of universe levels and level-polymorphic universes Set \mathcal{l} where \mathcal{C} : Level. For more information, see the page on universe levels.

3.38.2 Agda's sort system

The implementation of Agda's sort system is closely based on the theory of pure type systems. The full sort system of Agda consists of the following sorts:

- Set $_{i}$ and its universe-polymorphic variant Set l
- Prop $_{i}$ and its universe-polymorphic variant Prop l
- $\operatorname{Set} \omega_{i}$

Sorts Set $_{i}$ and Set l

As explained in the introduction, Agda has a hierarchy of sorts $\operatorname{Set}_{i}: \operatorname{Set}_{i+1}$, where i is any concrete natural number, i.e. $0,1,2,3, \ldots$ The sort Set is an abbreviation for Set ${ }_{0}$.

You can also refer to these sorts with the alternative syntax Seti. That means that you can also write Set 0, Set1, Set2, etc., instead of Set $_{0}$, Set $_{1}$, Set $_{2}$.

In addition, Agda supports the universe-polymorphic version Set $\{$ where $\ell:$ Level (see universe levels).

Sorts Prop_{i} and Prop

In addition to the hierarchy Set_{i}, Agda also supports a second hierarchy $\operatorname{Prop}_{i}: \operatorname{Set}_{i+1}$ (or Propi) of proofirrelevant propositions. Like Set, Prop also has a universe-polymorphic version Prop $\{$ where ℓ : Level.

Sorts $\operatorname{Set} \omega_{i}$

To assign a sort to types such as (\mathcal{l} : Level) \rightarrow Set $\mathcal{\ell}$, Agda further supports an additional sort Set ω that stands above all sorts Set_{i}.
Just as for Set and Prop, Set ω is the lowest level at an infinite hierarchy $\operatorname{Set} \omega_{i}$: $\operatorname{Set} \omega_{i+1}$ where $\operatorname{Set} \omega=$ Set ω_{0}. You can also refer to these sorts with the alternative syntax Set ω i. That means that you can also write $\operatorname{Set} \omega 0$, Set $\omega 1$, Set $\omega 2$, etc., instead of $\operatorname{Set} \omega_{0}$, Set ω_{1}, Set ω_{2}.

Now it is allowed, for instance, to declare a datatype in $\operatorname{Set} \omega$. This means that $\operatorname{Set} \omega$ before the implementation of this hierarchy, Set ω used to be a term, and there was no bigger sort that it in Agda. Now a type can be assigned to it, in this case, $\operatorname{Set} \omega_{1}$.

However, unlike the standard hierarchy of universes Set_{i}, this second hierarchy Set_{i} does not support universe polymorphism. This means that it is not possible to quantify over all Set ω_{i} at once. For example, the expression \forall $\{i\}$ (A : Set ω i) $\rightarrow A \rightarrow A$ would not be a well-formed agda term. See the section on Set ω on the page on universe levels for more information.

Concerning other applications, It should not be necessary to refer to these sorts during normal usage of Agda, but they might be useful for defining reflection-based macros.

Note: When--omega-in-omega is enabled, $\operatorname{Set} \omega_{i}$ is considered to be equal to $\operatorname{Set} \omega$ for all i (thus rendering Agda inconsistent).

3.38.3 Sort metavariables and unknown sorts

Under universe polymorphism, levels can be arbitrary terms, e.g., a level that contains free variables. Sometimes, we will have to check that some expression has a valid type without knowing what sort it has. For this reason, Agda's internal representation of sorts implements a constructor (sort metavariable) representing an unknown sort. The constraint solver can compute these sort metavariables, just like it does when computing regular term metavariables.

However, the presence of sort metavariables also means that sorts of other types can sometimes not be computed directly. For this reason, Agda's internal representation of sorts includes three additional constructors funSort, univSort, and piSort. These constructors compute to the proper sort once enough metavariables in their arguments have been solved.

Note: funsort, univSort and piSort are internal constructors that may be printed when evaluating a term. The user can not enter them, nor introduce them in agda code. All these constructors do not represent new sorts but instead, they compute to the right sort once their arguments are known.

funSort

The constructor funSort computes the sort of a function type even if the sort of the domain and the sort of the codomain are still unknown.

To understand how funSort works in general, let us assume the following scenario:

- sA and sB are two (possibly different) sorts.
- A : sA, meaning that A is a type that has sort $s A$.
- B : $s B$, meaning that B is a (possibly different) type that has sort $s B$.

Under these conditions, we can build the function type $A \rightarrow B:$ funsort sA sB. This type signature means that the function type $A \rightarrow B$ has a (possibly unknown) but well-defined sort funSort $s A s B$, specified in terms of the sorts of its domain and codomain.

If $s A$ and $s B$ happen to be known, then funsort $s A s B$ can be computed to a sort value. We list below all the possible computations that funSort can perform:

```
funSort Set\omega}\mp@subsup{\mp@code{S}}{i}{}\quad\operatorname{Set}\mp@subsup{\omega}{j}{}\quad=\operatorname{Set}\mp@subsup{\omega}{k}{}\quad(\mathrm{ where k = max (i,j))
funSort Set\omega}\mp@subsup{\omega}{i}{}\quad(\operatorname{Set}\textrm{b})=\operatorname{Set}\mp@subsup{\omega}{i}{
funSort Set\omega
funSort (Set a) Set\omega
funSort (Prop a) Set\omega
funSort (Set a) (Set b) = Set (a \sqcup b)
```

(continues on next page)

```
funSort (Prop a) (Set b) = Set (a \sqcup b)
funSort (Set a) (Prop b) = Prop (a \sqcup b)
funSort (Prop a) (Prop b) = Prop (a \sqcup b)
```

Example: the sort of the function type $\forall\{A\} \rightarrow A \rightarrow A$ with normal form $\left\{\mathrm{A}:{ }_{\mathrm{A}} \mathrm{F}\right\} \rightarrow \mathrm{A} \rightarrow \mathrm{A}$ evaluates to funSort (univSort _5) (funSort _5 _5) where:

- _ 5 is a metavariable that represents the sort of A.
- funSort _5 _5 is the sort of A \rightarrow A.

Note: funSort can admit just two arguments, so it will be iterated when the function type has multiple arguments. E.g. the function type $\forall\{A\} \rightarrow A \rightarrow A \rightarrow A$ evaluates to funSort (univSort _5) (funSort _5 (funSort _5 _5))

univSort

univSort returns the successor sort of a given sort.
Example: the sort of the function type $\forall\{A\} \rightarrow A$ with normal form $\left\{\mathrm{A}: \mathbf{A}^{5}\right\} \rightarrow \mathrm{A}$ evaluates to funSort (univSort _5) _5 where:

- univSort _ 5 is the sort where the sort of A lives, ie. the successor level of _5.

We list below all the possible computations that univSort can perform:

```
univSort (Set a) = Set (lsuc a)
univSort (Prop a) = Set (lsuc a)
univSort Set\omega}\mp@subsup{|}{i}{}=\mp@subsup{\operatorname{Set}}{i+1}{
```


piSort

Similarly, piSort s1 s2 is a constructor that computes the sort of a Π-type given the sort $s 1$ of its domain and the sort s 2 of its codomain as arguments.

To understand how piSort works in general, we set the following scenario:

- sA and sB are two (possibly different) sorts.
- A : sA, meaning that A is a type that has sort sA.
- x : A, meaning that x has type A .
- B : $s B$, meaning that B is a type (possibly different than A) that has sort $s B$.

Under these conditions, we can build the dependent function type ($\mathrm{x}: \mathrm{A}$) $\rightarrow \mathrm{B}:$ piSort sA $(\lambda \mathrm{x} \rightarrow$ $s B$). This type signature means that the dependent function type (x : A) $\rightarrow B$ has a (possibly unknown) but well-defined sort piSort SA sB , specified in terms of the element $\mathrm{x}: \mathrm{A}$ and the sorts of its domain and codomain.

We list below all the possible computations that piSort can perform:

```
piSort s1 ( \lambda x m s2) = funSort s1 s2 (if x does not occur freely in s2)
piSort (Set l) (\lambda x }->\mathrm{ s2) = Setw (if x occurs rigidly in s2)
piSort (Prop l) ( \lambda x > s2) = Set\omega (if x occurs rigidly in s2)
piSort Set\omegai ( 
```

With these rules, we can compute the sort of the function type $\forall\{\mathrm{A}\} \rightarrow \forall\{\mathrm{B}\} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{B}$ (or more explicitly, $\{\mathrm{A}: \quad$: 9$\}\left\{\mathrm{B}: _7\right\} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{B}$) to be piSort (univSort _9) ($\lambda \mathrm{A} \rightarrow$ funSort (univSort _7) (funSort _7 (funSort _9 _7)))
More examples:

- piSort Level (λ l \rightarrow Set l) evaluates to Set ω
- piSort (Set l) ($\lambda_{-} \rightarrow$ Set $\left.l^{\prime}\right)$ evaluates to Set (l \sqcup l')
- univSort (Set l) evaluates to Set (lsuc l)
- piSort s (λ x -> Set ω i) evaluates to funSort s Set ω

3.39 Syntactic Sugar

- Do-notation
- Desugaring
- Example
- Idiom brackets

3.39.1 Do-notation

A do-block consists of the layout keyword do followed by a sequence of do-statements, where

```
do-stmt ::= pat \leftarrow expr [where lam-clauses]
    | let decls
    | expr
lam-clause ::= pat }->\mathrm{ expr
```

The where clause of a bind is used to handle the cases not matched by the pattern left of the arrow. See details below.

Note: Arrows can use either unicode $(\leftarrow / \rightarrow)$ or ASCII ($\langle-/-\rangle$) variants.

For example:

```
filter : {A : Set} }->\mathrm{ (A }->\mathrm{ Bool) }->\mathrm{ List A }->\mathrm{ List A
filter p xs = do
    x }\leftarrow\textrm{xs
    true \leftarrow p x :: []
        where false }->\mathrm{ []
    x :: []
```

Do-notation is desugared before scope checking and is translated into calls to _ $\gg==_{-}$and _ $>{ }^{\prime}$, whatever those happen to be bound in the context of the do-block. This means that do-blocks are not tied to any particular notion of monad. In fact if there are no monadic statements in the do block it can be used as sugar for a let:

```
pure-do : Nat }->\mathrm{ Nat
pure-do n = do
    let p2 m=m * m
```

```
        p4 m= p2 (p2 m)
    p4 n
check-pure-do : pure-do 5 \equiv625
check-pure-do = refl
```


Desugaring

Statement	Sugar	Desugars to
Simple bind	$\begin{gathered} \text { do } \mathrm{m}^{\prime} \\ \mathrm{m}^{\prime} \end{gathered} \leftarrow \mathrm{m}$	$\begin{aligned} & \mathrm{m} \gg=\lambda \mathrm{x} \rightarrow \\ & \mathrm{~m}^{\prime} \end{aligned}$
Pattern bind	$\begin{aligned} & \text { do } \mathrm{p} \underset{\text { where } \mathrm{p}_{i} \rightarrow \mathrm{~m}_{i}}{\leftarrow} \quad \mathrm{~m}^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{m} \gg=\lambda \text { where } \\ & \mathrm{p} \rightarrow \mathrm{~m}^{\prime} \\ & \mathrm{p}_{i} \rightarrow \mathrm{~m}_{i} \end{aligned}$
Absurd match	do () $\leftarrow \mathrm{m}$	$\mathrm{m} \gg=\lambda()$
Non-binding statement	$\begin{gathered} \text { do } \mathrm{m} \\ \mathrm{~m}^{\prime} \end{gathered}$	$\begin{aligned} & \mathrm{m} \gg \\ & \mathrm{~m}^{\prime} \end{aligned}$
Let		```let ds in m'```

If the pattern in the bind is exhaustive, the where-clause can be omitted.

Example

Do-notation becomes quite powerful together with pattern matching on indexed data. As an example, let us write a correct-by-construction type checker for simply typed λ-calculus.

First we define the raw terms, using de Bruijn indices for variables and explicit type annotations on the lambda:

```
infixr 6 _=>_
data Type : Set where
    nat : Type
    _=>_ : (A B : Type) }->\mathrm{ Type
data Raw : Set where
    var : (x : Nat) }->\mathrm{ Raw
    lit : (n : Nat) }->\mathrm{ Raw
    suc : Raw
    app : (s t : Raw) }->\mathrm{ Raw
    lam : (A : Type) (t : Raw) }->\mathrm{ Raw
```

Next up, well-typed terms:

```
Context = List Type
-- A proof of }x\inxS\mathrm{ is the index into xS where x is located.
infix 2 _\in_
data _\in_ {A : Set} (x : A) : List A }->\mathrm{ Set where
    zero : }\forall{x,s}->x\inx :: x
    suc : }\forall{y\textrm{xs}}->\textrm{x}\in\textrm{xs}->\textrm{x}\in\textrm{y}:: x
data Term (\Gamma : Context) : Type }->\mathrm{ Set where
    var: }\forall{A}(x:A\in\Gamma)->Term \Gamma A
    lit : (n : Nat) }->\mathrm{ Term }\Gamma\mathrm{ nat
    suc : Term }\Gamma\mathrm{ (nat => nat)
    app: }\forall{ABB (s: Term \Gamma (A => B)) (t : Term \Gamma A) -> Term \Gamma B
    lam: }\forall\textrm{A}{\textrm{B}}(t:\operatorname{Term}(\textrm{A}:: \Gamma) B) -> Term \Gamma (A => B)
```

Given a well-typed term we can mechanically erase all the type information (except the annotation on the lambda) to get the corresponding raw term:


```
rawIndex zero = zero
rawIndex (suc i) = suc (rawIndex i)
eraseTypes : }\forall{\Gamma\textrm{A}}->\mathrm{ Term }\Gamma\mathrm{ A }->\mathrm{ Raw
eraseTypes (var x) = var (rawIndex x)
eraseTypes (lit n) = lit n
eraseTypes suc = suc
eraseTypes (app s t) = app (eraseTypes s) (eraseTypes t)
eraseTypes (lam A t) = lam A (eraseTypes t)
```

Now we're ready to write the type checker. The goal is to have a function that takes a raw term and either fails with a type error, or returns a well-typed term that erases to the raw term it started with. First, lets define the return type. It's parameterised by a context and the raw term to be checked:

```
data WellTyped }\Gamma\mathrm{ e : Set where
    ok:(A : Type) (t : Term \Gamma A) }->\mathrm{ eraseTypes t 
```

We're going to need a corresponding type for variables:

```
data InScope \Gamma n : Set where
    ok : (A : Type) (i : A }\in\Gamma)->\mathrm{ rawIndex i }\equiv\textrm{A}|\operatorname{InScope \Gamma n
```

Lets also have a type synonym for the case when the erasure proof is refl:

```
infix 2 _ofType_
pattern _ofType_x A = ok A x refl
```

Since this is a do-notation example we had better have a monad. Lets use the either monad with string errors:

```
TC : Set }->\mathrm{ Set
TC A = Either String A
typeError : }\forall{A}->\mathrm{ String }->\mathrm{ TC A
typeError = left
```

For the monad operations, we are using instance arguments to infer which monad is being used.
We are going to need to compare types for equality. This is our first opportunity to take advantage of pattern matching binds:

```
_=?=_ : (A B : Type ) }->\mathrm{ TC (A 三 B)
nat =?= nat = pure refl
nat =?= (_ => _) = typeError "type mismatch: nat }\not=\mp@subsup{_}{=>}{=
(_ => _) =?= nat = typeError "type mismatch: _ => _ f= nat"
(A => B) =?= (A A => B B ) = do
    refl \leftarrow A =?= A A
    refl \leftarrow B =?= B }\mp@subsup{B}{1}{
    pure refl
```

We will also need to look up variables in the context:

```
lookupVar : }\forall\Gamma\textrm{n}->\mathrm{ TC (InScope }\Gamma\textrm{n}\mathrm{ )
lookupVar [] n = typeError "variable out of scope"
lookupVar (A :: \Gamma) zero = pure (zero ofType A)
lookupVar (A :: \Gamma) (suc n) = do
    i ofType B & lookupVar }\Gamma\mathrm{ n
    pure (suc i ofType B)
```

Note how the proof obligation that the well-typed deBruijn index erases to the given raw index is taken care of completely under the hood (in this case by the refl pattern in the oftype synonym).

Finally we are ready to implement the actual type checker:

```
infer : }\forall\Gamma\mathrm{ e }->\mathrm{ TC (WellTyped }\Gamma\mathrm{ e)
infer \Gamma (var x) = do
    i ofType A \leftarrow lookupVar \Gamma x
    pure (var i ofType A)
infer \Gamma (lit n) = pure (lit n ofType nat)
infer \Gamma suc = pure (suc ofType nat => nat)
infer }\Gamma(app e e el) = do
    s ofType A => B \leftarrow infer }\Gamma\mathrm{ e
        where _ ofType nat }->\mathrm{ typeError "numbers cannot be applied to arguments"
    t oftype A A
    refl }\leftarrow\textrm{A}=\mathrm{ ?= A A
    pure (app s t ofType B)
infer \Gamma (lam A e) = do
    t ofType B \leftarrow infer (A :: \Gamma) e
    pure (lam A t oftype A => B)
```

In the app case we use a where-clause to handle the error case when the function to be applied is well-typed, but does not have a function type.

3.39.2 Idiom brackets

Idiom brackets is a notation used to make it more convenient to work with applicative functors, i.e. functors F equipped with two operations

```
pure : }\forall{A}->A->F
_\langle*\rangle__ : }\forall{A\textrm{AB}}->\textrm{F}(\textrm{A}->\textrm{B})->\textrm{FA}->\textrm{A
```

As do-notation, idiom brackets desugar before scope checking, so whatever the names pure and _<*>_ are bound to gets used when desugaring the idiom brackets.

The syntax for idiom brackets is

```
(| e al .. a an |)
```


Agda User Manual, Release 2.6.2.2

or using unicode lens brackets $\(\mathrm{U}+2987)$ and $)(\mathrm{U}+2988)$:
0 e $a_{1} \ldots a_{n}$)
This expands to (assuming left associative _<*>_)

```
pure e <*> a a <t> .. <*> a an
```

Idiom brackets work well with operators, for instance

```
(| if a then b else c |)
```

desugars to

```
pure if_then_else_ <*> a <*> b <*> c
```

Idiom brackets also support none or multiple applications. If the applicative functor has an additional binary operation

```
_\langle|>__: }\forall{A\textrm{AB}}->\textrm{FA}->\textrm{FA}->\textrm{FA
```

then idiom brackets support multiple applications separated by a vertical bar |, i.e.

which expands to (assuming right associative _<|>_)


```
\hookrightarrow<*> .. <*> al))
```

Idiom brackets without any application (\mid) or (l) expend to empty if

```
empty : }\forall{\textrm{A}}->\textrm{F}
```

is in scope. An applicative functor with empty and _<|>_ is typically called Alternative.
Note that pure, _ $\langle *\rangle_{-}$, and $\langle\rangle$_ need not be in scope to use ($|$) .
Limitations:

- Binding syntax and operator sections cannot appear immediately inside idiom brackets.
- The top-level application inside idiom brackets cannot include implicit applications, so

```
(| foo {x = e} a b |)
```

is illegal. In case the e is pure you can write

```
(| (foo {x = e}) a b |)
```

which desugars to

```
pure (foo {x=e}) <*> a <*> b
```


3.40 Syntax Declarations

Note: This is a stub

It is now possible to declare user-defined syntax that binds identifiers. Example:

```
record \Sigma (A : Set) (B : A -> Set) : Set where
    constructor _'_
    field fst : A
        snd : B fst
syntax }\Sigma\textrm{A}(\lambda\textrm{x}->\textrm{B})=[\textrm{x}\in\textrm{A
witness : }\forall{A\textrm{A}},\mp@code{[x}\in\textrm{A}]\times\textrm{B}->\textrm{A
witness (x , _) = x
```

The syntax declaration for Σ implies that x is in scope in B, but not in A.
You can give fixity declarations along with syntax declarations:

```
infix 5 \Sigma
syntax \Sigma A (\lambdax m B ) = [ x f A ] x B
```

The fixity applies to the syntax, not the name; syntax declarations are also restricted to ordinary, non-operator names. The following declaration is disallowed:

```
syntax _==_ x y = x ==== y
```

Syntax declarations must also be linear; the following declaration is disallowed:

```
syntax wrong x = x + x
```

Syntax declarations can have implicit arguments. For example:

```
id: }\forall{a}{A: Set a} >> A >> 
id x = x
syntax id {A} x = x f A
```

Unlike mixfix operators that can be used unapplied using the name including all the underscores, or partially applied by replacing only some of the underscores by arguments, syntax must be fully applied.

3.41 Telescopes

Note: This is a stub.

3.41.1 Irrefutable Patterns in Binding Positions

Since Agda 2.6.1, irrefutable patterns can be used at every binding site in a telescope to take the bound value of record type apart. The type of the second projection out of a dependent pair will for instance naturally mention the value of the first projection. Its type can be defined directly using an irrefutable pattern as follows:

```
proj2 : ((a, _): \sum A B ) }->\mathrm{ B a
```

And this second projection can be implemented with a lamba-abstraction using one of these irrefutable patterns taking the pair apart:

```
proj2 = (_ , b) }->\textrm{b
```

Using an as-pattern makes it possible to name the argument and to take it apart at the same time. We can for instance prove that any pair is equal to the pairing of its first and second projections, a property commonly called eta-equality:

```
eta:(p@(a,b): \SigmaAB) 
eta p = refl
```


3.42 Termination Checking

Not all recursive functions are permitted - Agda accepts only these recursive schemas that it can mechanically prove terminating.

3.42.1 Primitive recursion

In the simplest case, a given argument must be exactly one constructor smaller in each recursive call. We call this scheme primitive recursion. A few correct examples:

```
plus : Nat }->\mathrm{ Nat }->\mathrm{ Nat
plus zero m = m
plus (suc n) m = suc (plus n m)
natEq : Nat }->\mathrm{ Nat }->\mathrm{ Bool
natEq zero zero = true
natEq zero (suc m) = false
natEq (suc n) zero = false
natEq (suc n) (suc m) = natEq n m
```

Both plus and natEq are defined by primitive recursion.
The recursive call in plus is OK because n is a subexpression of suc n (so n is structurally smaller than suc n). So every time plus is recursively called the first argument is getting smaller and smaller. Since a natural number can only have a finite number of suc constructors we know that plus will always terminate.
nat Eq terminates for the same reason, but in this case we can say that both the first and second arguments of natEq are decreasing.

3.42.2 Structural recursion

Agda's termination checker allows more definitions than just primitive recursive ones - it allows structural recursion.
This means that we require recursive calls to be on a (strict) subexpression of the argument (see fib below) - this is more general that just taking away one constructor at a time.

```
fib : Nat }->\mathrm{ Nat
fib zero = zero
fib (suc zero) = suc zero
fib (suc (suc n)) = plus (fib n) (fib (suc n))
```

It also means that arguments may decrease in an lexicographic order - this can be thought of as nested primitive recursion (see ack below).

```
ack : Nat }->\mathrm{ Nat }->\mathrm{ Nat
ack zero m = suc m
ack (suc n) zero = ack n (suc zero)
ack (suc n) (suc m) = ack n (ack (suc n) m)
```

In ack either the first argument decreases or it stays the same and the second one decreases. This is the same as a lexicographic ordering.

3.42.3 With-functions

3.42.4 Pragmas and Options

- The NON_TERMINATING pragma

This is a safer version of TERMINATING which doesn't treat the affected functions as terminating. This means that NON_TERMINATING functions do not reduce during type checking. They do reduce at run-time and when invoking $\mathrm{C}-\mathrm{C} \quad \mathrm{C}-\mathrm{n}$ at top-level (but not in a hole). The pragma was added in Agda 2.4.2.

- The TERMINATING pragma

Switches off termination checker for individual function definitions and mutual blocks and marks them as terminating. Since Agda 2.4.2.1 replaced the NO_TERMINATION_CHECK pragma.

The pragma must precede a function definition or a mutual block. The pragma cannot be used in --safe mode.
Examples:

- Skipping a single definition: before type signature:

```
{-# TERMINATING #-}
a : A
a =a
```

- Skipping a single definition: before first clause:

```
b : A
{-# TERMINATING #-}
b = b
```

- Skipping an old-style mutual block: Before mutual keyword:

```
{-# TERMINATING #-}
mutual
    c : A
    c}=\textrm{d
    d : A
    d = c
```

- Skipping an old-style mutual block: Somewhere within mutual block before a type signature or first function clause:

```
mutual
    {-# TERMINATING #-}
e : A
```

(continues on next page)
(continued from previous page)

```
e = f
f : A
f = e
```

- Skipping a new-style mutual block: Anywhere before a type signature or first function clause in the block:

```
g : A
h : A
g = h
{-# TERMINATING #-}
h = g
```


3.42.5 References

Andreas Abel, Foetus - termination checker for simple functional programs

3.43 Universe Levels

Agda' type system includes an infinite hierarchy of universes $\operatorname{Set}_{i}: \operatorname{Set}_{i+1}$. This hierarchy enables quantification over arbitrary types without running into the inconsistency that follows from set : Set. These universes are further detailed on the page on Agda's sort system.

However, when working with this hierarchy it can quickly get tiresome to repeat the same definition at different universe levels. For example, we might be forced to define new datatypes data List (A : Set) : Set, data List $_{1}$ (A : Set ${ }_{1}$) : Set_{1}, etc. Also every function on lists (such as append) must be re-defined, and every theorem about such functions must be re-proved, for every possible level.

The solution to this problem is universe polymorphism. Agda provides a special primitive type Level, whose elements are possible levels of universes. In fact, the notation for the nth universe, Set_{n}, is just an abbreviation for Set n, where n : Level is a level. We can use this to write a polymorphic List operator that works at any level. The library Agda. Primitive must be imported to access the Level type. The definition then looks like this:

```
open import Agda.Primitive
data List {n : Level} (A : Set n) : Set n where
    [] : List A
    _::_ : A }->\mathrm{ List A }->\mathrm{ List A
```

This new operator works at all levels; for example, we have

```
List Nat : Set
List Set : Set }\mp@subsup{\mp@code{I}}{}{\prime
List Set }\mp@subsup{\mp@code{S}}{1}{: Set
```


3.43.1 Level arithmetic

Even though we don't have the number of levels specified, we know that there is a lowest level lzero, and for each level n, there exists some higher level lsuc n; therefore, the set of levels is infinite. In addition, we can also take the least upper bound $n \sqcup m$ of two levels. In summary, the following (and only the following) operations on levels are provided:

```
lzero : Level
lsuc : (n : Level) }->\mathrm{ Level
___ : (n m : Level) -> Level
```

This is sufficient for most purposes; for example, we can define the cartesian product of two types of arbitrary (and not necessarily equal) levels like this:

```
data_ < _ {n m : Level} (A : Set n) (B : Set m) : Set (n }\sqcup\textrm{m})\mathrm{ where
    _\prime}:A->B->A\times
```

With this definition, we have, for example:

```
Nat }\times\mathrm{ Nat : Set
Nat x Set : Set }\mp@subsup{\boldsymbol{S}}{1}{
Set }\times\mathrm{ Set : Set }\mp@subsup{}{1}{
```


3.43.2 Intrinsic level properties

Levels and their associated operations have some properties which are internally and automatically solved by the compiler. This means that we can replace some expressions with others, without worrying about the expressions for their corresponding levels matching exactly.

For example, we can write:

```
_:{F:(l : Level) }->\mathrm{ Set l} {l1 l2 : Level} }->\textrm{F}(11\textrm{L}|2)->\textrm{F}\mathrm{ (l2 ப l1)
```

$L_{-}=\lambda \mathrm{x} \rightarrow \mathrm{x}$
and Agda does the conversion from $\mathrm{F}(11 \sqcup 12)$ to $\mathrm{F}(12 \sqcup 11)$ automatically.
Here is a list of the level properties:

- Idempotence: a \sqcup a is the same as a.
- Associativity: $(\mathrm{a} \sqcup \mathrm{b}) \quad \mathrm{c}$ is the same as $\mathrm{a} \sqcup(\mathrm{b} \sqcup \mathrm{c})$.
- Commutativity: $\mathrm{a} \quad \sqcup \mathrm{b}$ is the same as $\mathrm{b} \sqcup \mathrm{a}$.
- Distributivity of lsuc over \sqcup : lsuc ($\mathrm{a} \sqcup \mathrm{b}$) is the same as lsuc a \sqcup lsuc b.
- Neutrality of lzero: a \sqcup lzero is the same as a.
- Subsumption: a \sqcup lsuc a is the same as lsuc a. Notably, this also holds for arbitrarily many lsuc usages: $\mathrm{a} \sqcup$ lsuc (lsuc a) is also the same as lsuc (lsuc a).

3.43.3 forall notation

From the fact that we write Set n, it can always be inferred that n is a level. Therefore, when defining universepolymorphic functions, it is common to use the \forall (or forall) notation. For example, the type of the universepolymorphic map operator on lists can be written

```
map : }\forall{nm}{A: Set n} {B: Set m} -> (A A B) -> List A -> List B
```

which is equivalent to

```
map : {n m : Level} {A: Set n} {B: Set m} -> (A }->\textrm{A}|)->\mathrm{ List A }->\mathrm{ List B
```


3.43.4 Expressions of sort Set ω

In a sense, universes were introduced to ensure that every Agda expression has a type, including expressions such as $S e t, S_{1}$, etc. However, the introduction of universe polymorphism inevitably breaks this property again, by creating some new terms that have no type. Consider the polymorphic singleton set Unit $n:$ Set $_{n}$, defined by

```
data Unit (n : Level) : Set n where
    <> : Unit n
```

It is well-typed, and has type

```
Unit : (n : Level) }->\mathrm{ Set n
```

However, the type ($\mathrm{n}:$ Level) \rightarrow Set n , which is a valid Agda expression, does not belong to any universe in the Set hierarchy. Indeed, the expression denotes a function mapping levels to sorts, so if it had a type, it should be something like Level \rightarrow Sort, where Sort is the collection of all sorts. But if Agda were to support a sort Sort of all sorts, it would be a sort itself, so in particular we would have Sort : Sort. Just like Type : Type, this would leads to circularity and inconsistency.

Instead, Agda introduces a new sort Set ω that stands above all sorts Set \mathcal{l}, but is not itself part of the hierarchy. For example, Agda assigns the expression ($\mathrm{n}:$ Level) \rightarrow Set n to be of type Set ω.
$\operatorname{Set} \omega$ is itself the first step in another infinite hierarchy $\operatorname{Set} \omega_{i}: \operatorname{Set} \omega_{i+1}$. However, this hierarchy does not support universe polymorphism, i.e. there are no sorts $\operatorname{Set} \omega$ lfor l : Level. Allowing this would require a new universe Set 2ω, which would then naturally lead to $\operatorname{Set} 2 \omega_{1}$, and so on. Disallowing universe polymorphism for $\operatorname{Set} \omega_{i}$ avoids the need for such even larger sorts. This is an intentional design decision.

3.43.5 Pragmas and options

- The option --type-in-type disables the checking of universe level consistency for the whole file.
- The option --omega-in-omega enables the typing rule $\operatorname{Set} \omega$: $\operatorname{Set} \omega$ (thus making Agda inconsistent) but otherwise leaves universe checks intact.
- The pragma \{-\# NO_UNIVERSE_CHECK \#-\} can be put in front of a data or record type to disable universe consistency checking locally. Example:

```
{-# NO_UNIVERSE_CHECK #-}
data U : Set where
    el : Set }->\mathrm{ U
```

This pragma applies only to the check that the universe level of the type of each constructor argument is less than or equal to the universe level of the datatype, not to any other checks.

New in version 2.6.0.
The options --type-in-type and --omega-in-omega and the pragma \{-\# NO_UNIVERSE_CHECK \#-\} cannot be used with -safe.

3.44 With-Abstraction

- Usage
- Generalisation
- Nested with-abstractions
- Simultaneous abstraction
- Making with-abstractions hidden and/or irrelevant
- Using underscores and variables in pattern repetition
- Irrefutable With
- Rewrite
- With-abstraction equality
- Alternatives to with-abstraction
- Termination checking
- Performance considerations
- Technical details
- Examples
- Ill-typed with-abstractions

With-abstraction was first introduced by Conor McBride [McBride2004] and lets you pattern match on the result of an intermediate computation by effectively adding an extra argument to the left-hand side of your function.

3.44.1 Usage

In the simplest case the with construct can be used just to discriminate on the result of an intermediate computation. For instance

```
filter : {A : Set } }->(\textrm{A}->\textrm{Bool})->\mathrm{ List A }->\mathrm{ List A
filter p [] = []
filter p (x :: xs) with p x
filter p (x :: xs) | true = x :: filter p xs
filter p (x :: xs) | false = filter p xs
```

The clause containing the with-abstraction has no right-hand side. Instead it is followed by a number of clauses with an extra argument on the left, separated from the original arguments by a vertical bar (1).

When the original arguments are the same in the new clauses you can use the . . . syntax:

```
filter : {A : Set } }->\mathrm{ (A }->\mathrm{ Bool) }->\mathrm{ List A }->\mathrm{ List A
filter p [] = []
filter p (x :: xs) with p x
... | true = x :: filter p xs
... | false = filter p xs
```

In this case . . expands to filter p ($x:: x s$). There are three cases where you have to spell out the left-hand side:

- If you want to do further pattern matching on the original arguments.
- When the pattern matching on the intermediate result refines some of the other arguments (see Dot patterns).
- To disambiguate the clauses of nested with-abstractions (see Nested with-abstractions below).

Generalisation

The power of with-abstraction comes from the fact that the goal type and the type of the original arguments are generalised over the value of the scrutinee. See Technical details below for the details. This generalisation is important when you have to prove properties about functions defined using with. For instance, suppose we want to prove that the filter function above satisfies some property P. Starting out by pattern matching of the list we get the following (with the goal types shown in the holes)

```
postulate P : }\forall{A} -> List A -> Set
postulate p-nil : }\forall{\textrm{A}}->\textrm{P}{\textrm{A}} [
postulate Q : Set
postulate q-nil : Q
```

```
proof : {A : Set} (p : A -> Bool) (xs : List A) -> P (filter p xs)
proof p [] = {! P [] !}
proof p (x :: xS) = {! P (filter p (x :: xS) / p x) !}
```

In the cons case we have to prove that P holds for filter $p(x:: x s) \mid p x$. This is the syntax for a stuck with-abstraction-filter cannot reduce since we don't know the value of $p x$. This syntax is used for printing, but is not accepted as valid Agda code. Now if we with-abstract over $p \mathrm{x}$, but don't pattern match on the result we get:

```
proof : {A : Set} (p : A -> Bool) (xs : List A) -> P (filter p xs)
proof p [] = p-nil
proof p (x :: xs) with p x
\cdots | r = {! P (filter p (x :: xS) | r) !}
```

Here the $p x$ in the goal type has been replaced by the variable r introduced for the result of $p x$. If we pattern match on r the with-clauses can reduce, giving us:

```
proof : {A : Set} (p : A -> Bool) (xs : List A) }->\textrm{P}\mathrm{ (filter p xs)
proof p [] = p-nil
proof p (x :: xs) with p x
... | true = {! P (x :: filter p xS) !}
... | false = {! P (filter p xS) !}
```

Both the goal type and the types of the other arguments are generalised, so it works just as well if we have an argument whose type contains filter p xs.

```
proof2 : {A : Set} (p : A -> Bool) (xs : List A) }->\textrm{P}\mathrm{ (filter p xs) }->\textrm{Q
proof2 p [] _ = q-nil
proof2 p (x :: xs) H with p x
    | true = {! H : P (x :: filter p xs) !}
    | false = {! H : P (filter p xS) !}
```

The generalisation is not limited to scrutinees in other with-abstractions. All occurrences of the term in the goal type and argument types will be generalised.

Note that this generalisation is not always type correct and may result in a (sometimes cryptic) type error. See Ill-typed with-abstractions below for more details.

Nested with-abstractions

With-abstractions can be nested arbitrarily. The only thing to keep in mind in this case is that the . . . syntax applies to the closest with-abstraction. For example, suppose you want to use . . . in the definition below.

```
compare : Nat }->\mathrm{ Nat }->\mathrm{ Comparison
compare x y with x < y
compare x y | false with y < x
compare x y | false | false = equal
compare x y | false | true = greater
compare x y | true = less
```

You might be tempted to replace compare $\mathrm{x} y$ with . . . in all the with-clauses as follows.

```
compare : Nat }->\mathrm{ Nat }->\mathrm{ Comparison
compare x y with x < y
... | false with y < x
... I false = equal
... | true = greater
... | true = less -- WRONG
```

This, however, would be wrong. In the last clause the . . . is interpreted as belonging to the inner with-abstraction (the whitespace is not taken into account) and thus expands to compare $x y \mid$ false | true. In this case you have to spell out the left-hand side and write

```
compare : Nat }->\mathrm{ Nat }->\mathrm{ Comparison
compare x y with x < y
... | false with y < x
... | false = equal
... | true = greater
compare x y | true = less
```


Simultaneous abstraction

You can abstract over multiple terms in a single with-abstraction. To do this you separate the terms with vertical bars (1).

```
compare : Nat }->\mathrm{ Nat }->\mathrm{ Comparison
compare x y with x < y | y < x
... | true | _ = less
... | _ | true = greater
... | false | false = equal
```

In this example the order of abstracted terms does not matter, but in general it does. Specifically, the types of later terms are generalised over the values of earlier terms. For instance

```
postulate plus-commute : (a b : Nat) }->\textrm{a}+\textrm{b}\equiv\textrm{b}+\textrm{a
postulate P : Nat }->\mathrm{ Set
```

```
thm:(a b : Nat) ->P (a + b) ->P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t | ab | eq ={! t : Pab, eq:ab \equivab +a !}
```

Note that both the type of t and the type of the result eq of plus-commute a bave been generalised over $a+$ b. If the terms in the with-abstraction were flipped around, this would not be the case. If we now pattern match on eq we get

```
thm:(a b : Nat) ->P (a + b) ->P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t | . (b + a) | refl = {! t:P (b + a) !}
```

and can thus fill the hole with t. In effect we used the commutativity proof to rewrite $\mathrm{a}+\mathrm{b}$ to $\mathrm{b}+\mathrm{a}$ in the type of t. This is such a useful thing to do that there is special syntax for it. See Rewrite below. A limitation of generalisation is that only occurrences of the term that are visible at the time of the abstraction are generalised over, but more instances of the term may appear once you start filling in the right-hand side or do further matching on the left. For instance, consider the following contrived example where we need to match on the value of $f n$ for the type of q to reduce, but we then want to apply q to a lemma that talks about $f n$:

```
postulate
    R : Set
    P : Nat }->\mathrm{ Set
    f : Nat }->\mathrm{ Nat
    lemma : }\forall\textrm{n}->\textrm{P}(\textrm{f}n)->\textrm{R
Q : Nat }->\mathrm{ Set
Q zero = \perp
Q (suc n) = P (suc n)
```

```
proof :(n : Nat) }->\textrm{Q}(\textrm{f}|)->\textrm{R
proof n q with f n
proof n () | zero
proof n q | suc fn ={! q:P (suc fn) !}
```

Once we have generalised over $f n$ we can no longer apply the lemma, which needs an argument of type P (f n). To solve this problem we can add the lemma to the with-abstraction:

```
proof : (n : Nat) }->\textrm{Q}(\textrm{f}|\textrm{n})->\textrm{R
proof n q with f n | lemma n
proof n () | zero | -
proof n q | suc fn | lem = lem q
```

In this case the type of lemma $n(P \quad(f) \rightarrow R)$ is generalised over $f n$ so in the right-hand side of the last clause we have q : P (suc fn) and lem: P (suc fn) $\rightarrow R$.

See With-abstraction equality below for an alternative approach.

Making with-abstractions hidden and/or irrelevant

It is possible to add hiding and relevance annotations to with expressions. For example:

```
module _ (A B : Set) (recompute : . B }->.{{\textrm{A}}}->\mathrm{ B) where
    _$_: . (A -> B) }->\mathrm{ . A }->\textrm{B
    f $ x with .{f} | .(f x) | . {{x}}
    ... | y = recompute y
```

This can be useful for hiding with-abstractions that you do not need to match on but that need to be abstracted over for the result to be well-typed. It can also be used to abstract over the fields of a record type with irrelevant fields, for example:

```
record EqualBools : Set }\mp@subsup{\mp@code{l}}{\mathrm{ where}}{
    field
        bool1 : Bool
        bool2 : Bool
        .same : bool1 \equiv bool2
open EqualBools
```

(continued from previous page)

```
example : EqualBools }->\mathrm{ EqualBools
example x with bool1 x | bool2 x | .(same x)
... | true | y' | eq' = record { bool1 = true; bool2 = y'; same = eq' }
... | false | y' | eq' = record { booll= false; bool2 = y'; same = eq' }
```


Using underscores and variables in pattern repetition

If an ellipsis ... cannot be used, the with-clause has to repeat (or refine) the patterns of the parent clause. Since Agda 2.5.3, such patterns can be replaced by underscores _ if the variables they bind are not needed. Here is a (slightly contrived) example:

```
record R : Set where
    coinductive -- disallows matching
    field f : Bool
            n : Nat
data P (r : R) : Nat }->\mathrm{ Set where
    fTrue : R.f r = true }->\mathrm{ P r zero
    nSuc : P r (suc (R.n r))
data Q : (b : Bool) (n : Nat) }->\mathrm{ Set where
    true! : Q true zero
    suc! : \forall{b n} }->\mathrm{ Q b (suc n)
test: (r : R) {n:Nat} (p: P r n) -> Q (R.f r) n
test r nSuc = suc!
test r (fTrue p) with R.f r
test - (fTrue ()) | false
test _ _ | true = true! -- underscore instead of (isTrue _)
```

Since Agda 2.5.4, patterns can also be replaced by a variable:

```
f : List Nat }->\mathrm{ List Nat
f [] = []
f (x :: xS) with f xs
f xs0 | r = ?
```

The variable $x s 0$ is treated as a let-bound variable with value . x :: .xs (where . x : Nat and . $x s$: List Nat are out of scope). Since with-abstraction may change the type of variables, the instantiation of such let-bound variables are type checked again after with-abstraction.

Irrefutable With

When a pattern is irrefutable, we can use a pattern-matching with instead of a traditional with block. This gives us a lightweight syntax to make a lot of observations before using a "proper" with block. For a basic example of such an irrefutable pattern, see this unfolding lemma for pred

```
pred : Nat }->\mathrm{ Nat
pred zero = zero
pred (suc n) = n
NotNull : Nat }->\mathrm{ Set
NotNull zero = = -- false
```

(continued from previous page)

```
NotNull (suc n) = T -- trivially true
pred-correct : }\forall\textrm{n}\mathrm{ (pr : NotNull n) }->\mathrm{ suc (pred n) }\equiv\textrm{n
pred-correct n pr with suc p \leftarrow n = refl
```

In the above code snippet we do not need to entertain the idea that n could be equal to zero: Agda detects that the proof pr allows us to dismiss such a case entirely.

The patterns used in such an inversion clause can be arbitrary. We can for instance have deep patterns, e.g. projecting out the second element of a vector whose length is neither 0 nor 1 :

```
infixr 5 _::_
data Vec {a} (A : Set a) : Nat }->\mathrm{ Set a where
    [] : Vec A zero
    _:__ : 
second : }\forall{n} {pr : NotNull (pred n)} -> Vec A n -> A
second vs with (_ :: v :: _) \leftarrow vs = v
```

Remember the example of simultaneous abstraction from above. A simultaneous rewrite / pattern-matching with is to be understood as being nested. That is to say that the type refinements introduced by the first case analysis may be necessary to type the following ones.

In the following example, in focusAt we are only able to perform the splitAt we are interested in because we have massaged the type of the vector argument using suc-+ first.

```
suc-+ : }\forall\textrm{m n}->\mathrm{ suc m + n 三 m + suc n
suc-+ zero n = refl
suc-+ (suc m) n rewrite suc-+ m n = refl
infixr 1 _X_
_}\mp@subsup{_}{_}{}:\forall{a b} (A : Set a) (B : Set b) -> Set ?
A }\times\textrm{B}=\Sigma\textrm{A}(\lambda_->B
splitAt : }\forall\textrm{m}{\textrm{n}}->\operatorname{Vec}A(m+n)->\operatorname{Vec}Am\times\operatorname{Vec}A
splitAt zero xs = ([] , xs)
splitAt (suc m) (x :: xs) with (ys , zs) \leftarrow splitAt m xs = (x :: ys , zs)
-- focusAt m (x (x :: .. :: x xm-1 :: 午m :: 
-- returns ((x0 :: ... :: x ( xm-1) , xm , ( }\mp@subsup{x}{m+1}{}:: \cdots..: \mp@subsup{x}{m+n}{})
focusAt : }\forall\textrm{m}{\textrm{n}}->\operatorname{Vec A (suc (m + n)) }->\mathrm{ Vec A m }\times\mathrm{ A }\times\operatorname{Vec A n
focusAt m {n} vs rewrite suc-+ m n
    with (before, focus :: after) \leftarrow splitAt m vs
    = (before , focus , after)
```

You can alternate arbitrarily many rewrite and pattern-matching with clauses and still perform a with abstraction afterwards if necessary.

Rewrite

Remember example of simultaneous abstraction from above.

```
postulate plus-commute : (a b : Nat) }->\textrm{a}+\textrm{b}\equiv\textrm{b}+\textrm{a
thm:(a b : Nat) ->P (a + b) ->P (b + a)
```

```
thm a b t with a + b | plus-commute a b
thm a b t | . (b + a) | refl = t
```

This pattern of rewriting by an equation by with-abstracting over it and its left-hand side is common enough that there is special syntax for it:

```
thm:(a b : Nat) }->\textrm{P}(\textrm{a}+\textrm{b})->\textrm{P}(\textrm{b}+\textrm{a}
thm a b t rewrite plus-commute a b = t
```

The rewrite construction takes a term eq of type lhs \equiv rhs, where _ $\bar{\equiv}$ _ is the built-in equality type, and expands to a with-abstraction of 1 hs and eq followed by a match of the result of eq against refl:

```
f ps rewrite eq = v
    -->
f ps with lhs | eq
... | .rhs | refl = v
```

One limitation of the rewrite construction is that you cannot do further pattern matching on the arguments after the rewrite, since everything happens in a single clause. You can however do with-abstractions after the rewrite. For instance,

```
postulate T : Nat }->\mathrm{ Set
isEven : Nat -> Bool
isEven zero = true
isEven (suc zero) = false
isEven (suc (suc n)) = isEven n
thm
thm}\mp@subsup{1}{1}{}\textrm{a b t rewrite plus-commute a b with isEven a
thm}\mp@subsup{|}{1}{}a\mp@code{b t | true = t
thm
```

Note that the with-abstracted arguments introduced by the rewrite (lhs and eq) are not visible in the code.

With-abstraction equality

When you with-abstract a term t you lose the connection between t and the new argument representing its value. That's fine as long as all instances of t that you care about get generalised by the abstraction, but as we saw above this is not always the case. In that example we used simultaneous abstraction to make sure that we did capture all the instances we needed.

An alternative to that is to get Agda to remember in an equality proof that the patterns in the with clauses come from the expression you abstracted over. This is possible using the in keyword.

In the following artificial example, we try to prove that there exists two numbers such that one equals the double of the other. We start by computing the double of our input m and call it n. We can then return the nested pair containing m, n, and we now need a proof that $m+m \equiv n$. Luckily we used in eq when computing n as $m+m$ and this eq is exactly the proof we need.

```
double : Nat }->\Sigma\operatorname{Nat}(\lambda\textrm{m}->\Sigma\operatorname{Nat ( }\lambda\textrm{n}->\textrm{n}->\textrm{m}+\textrm{m}\equiv\textrm{n})
double m with n & m + m in eq = m, n , eq
```

For a more natural example, we prove that filter (defined at the top of this page) is idempotent. That is to say that applying it twice to an input list is the same as only applying it once.
In the filter-filter p ($x:: x s$) case, abstracting over and then matching on the result of p allows the first call to filter p ($x:: x s$) to reduce.

In case the element x is kept (i.e. $p x$ is $t r u e$), the second call to $f i l t e r$ on the LHS goes on to performs the same $p \times$ test. Because we have retained the proof that $p x \equiv$ true in eq, we are able to rewrite by this equality and get it to reduce too.

This leads to just enough computation that we can finish the proof with an appeal to congruence and the induction hypothesis.

```
filter-filter : }\forall\mathrm{ {A} p (xs : List A) }->\mathrm{ filter p (filter p xs) 三 filter p xs
filter-filter p [] = refl
filter-filter p (x :: xs) with p x in eq
... | false = filter-filter p xs -- easy
... I true -- second filter stuck on `p x`: rewrite by `eq`!
    rewrite eq = cong (x ::_) (filter-filter p xs)
```


Alternatives to with-abstraction

Although with-abstraction is very powerful there are cases where you cannot or don't want to use it. For instance, you cannot use with-abstraction if you are inside an expression in a right-hand side. In that case there are a couple of alternatives.

Pattern lambdas

Agda does not have a primitive case construct, but one can be emulated using pattern matching lambdas. First you define a function case_of_ as follows:

```
case_of_: }\forall{\mathrm{ a b } {A : Set a } {B : Set b } }->\textrm{S}|\textrm{A}->(\textrm{A}->\textrm{B})->\textrm{B
case x of f = f x
```

You can then use this function with a pattern matching lambda as the second argument to get a Haskell-style case expression:

```
filter : {A : Set } }->(A)->\mathrm{ Bool) }->\mathrm{ List A }->\mathrm{ List A
filter p [] = []
filter p (x :: xs) =
    case p x of
    \lambda { true }->\mathrm{ x :: filter p xs
        ; false }->\mathrm{ filter p xs
        }
```

This version of case_of_only works for non-dependent functions. For dependent functions the target type will in most cases not be inferrable, but you can use a variant with an explicit B for this case:


```
case x return B of f = f x
```

The dependent version will let you generalise over the scrutinee, just like a with-abstraction, but you have to do it manually. Two things that it will not let you do is

- further pattern matching on arguments on the left-hand side, and
- refine arguments on the left by the patterns in the case expression. For instance if you matched on a Vec A n the n would be refined by the nil and cons patterns.

Helper functions

Internally with-abstractions are translated to auxiliary functions (see Technical details below) and you can always write these functions manually. The downside is that the type signature for the helper function needs to be written out explicitly, but fortunately the Emacs Mode has a command ($\mathrm{C}-\mathrm{c} \quad \mathrm{C}-\mathrm{h}$) to generate it using the same algorithm that generates the type of a with-function.

Termination checking

The termination checker runs on the translated auxiliary functions, which means that some code that looks like it should pass termination checking does not. Specifically this happens in call chains like $C_{1}\left(c_{2} x\right) \longrightarrow C_{1} x$ where the recursive call is under a with-abstraction. The reason is that the auxiliary function only gets passed x, so the call chain is actually $c_{1}\left(\begin{array}{cc}c_{2} & x) \longrightarrow x \longrightarrow c_{1} \\ x\end{array}\right.$, and the termination checker cannot see that this is terminating. For example:

```
data D : Set where
    [_] : Nat }->\mathrm{ D
```

```
fails : D }->\mathrm{ Nat
fails [ zero ] = zero
fails [ suc n ] with some-stuff
... | _ = fails [ n ]
```

The easiest way to work around this problem is to perform a with-abstraction on the recursive call up front:

```
fixed : D }->\mathrm{ Nat
fixed [ zero ] = zero
fixed [ suc n ] with fixed [ n ] | some-stuff
... | rec | _ = rec
```

If the function takes more arguments you might need to abstract over a partial application to just the structurally recursive argument. For instance,

```
fails : Nat }->\textrm{D}->\mathrm{ Nat
fails _ [ zero ] = zero
fails _ [ suc n ] with some-stuff
... | m = fails m [ n ]
fixed : Nat }->\mathrm{ D }->\mathrm{ Nat
fixed _ [ zero ] = zero
fixed _ [ suc n ] with ( \lambda m -> fixed m [ n ]) | some-stuff
... | rec | m = rec m
```

A possible complication is that later with-abstractions might change the type of the abstracted recursive call:

```
T: D }->\mathrm{ Set
suc-T : }\forall{n}->T [ n ] -> T [ suc n ]
zero-T : T [ zero ]
```

```
fails : (d : D) }->\mathrm{ T d
fails [ zero ] = zero-T
fails [ suc n ] with some-stuff
... | _ with [ n ]
... | z = suc-T (fails [ n ])
```

Trying to abstract over the recursive call as before does not work in this case.

```
still-fails : (d : D) -> T d
still-fails [ zero ] = zero-T
still-fails [ suc n ] with still-fails [ n ] | some-stuff
... | rec | _ with [ n ]
... | z = suc-T rec -- Type error because rec : T z
```

To solve the problem you can add rec to the with-abstraction messing up its type. This will prevent it from having its type changed:

```
fixed : (d : D) }->\mathrm{ T d
fixed [ zero ] = zero-T
fixed [ suc n ] with fixed [ n ] | some-stuff
... | rec | _ with rec | [ n ]
... | - | z = suc-T rec
```


Performance considerations

The generalisation step of a with-abstraction needs to normalise the scrutinee and the goal and argument types to make sure that all instances of the scrutinee are generalised. The generalisation also needs to be type checked to make sure that it's not ill-typed. This makes it expensive to type check a with-abstraction if

- the normalisation is expensive,
- the normalised form of the goal and argument types are big, making finding the instances of the scrutinee expensive,
- type checking the generalisation is expensive, because the types are big, or because checking them involves heavy computation.

In these cases it is worth looking at the alternatives to with-abstraction from above.

3.44.2 Technical details

Internally with-abstractions are translated to auxiliary functions-there are no with-abstractions in the Core language. This translation proceeds as follows. Given a with-abstraction

$$
\begin{aligned}
& f: \Gamma \rightarrow B \\
& f p s \quad \text { with } t_{1}|\ldots| t_{m} \\
& f p s_{1} \quad\left|q_{11}\right| \ldots \mid q_{1 m}=v_{1} \\
& \vdots \\
& f p s_{n} \quad\left|q_{n 1}\right| \ldots \mid q_{n m}=v_{n}
\end{aligned}
$$

where $\Delta \vdash p s: \Gamma$ (i.e. Δ types the variables bound in $p s$), we

- Infer the types of the scrutinees $t_{1}: A_{1}, \ldots, t_{m}: A_{m}$.
- Partition the context Δ into Δ_{1} and Δ_{2} such that Δ_{1} is the smallest context where $\Delta_{1} \vdash t_{i}: A_{i}$ for all i, i.e., where the scrutinees are well-typed. Note that the partitioning is not required to be a split, $\Delta_{1} \Delta_{2}$ can be a (well-formed) reordering of Δ.
- Generalise over the $t_{i} \mathrm{~s}$, by computing

$$
C=\left(w_{1}: A_{1}\right)\left(w_{1}: A_{2}^{\prime}\right) \ldots\left(w_{m}: A_{m}^{\prime}\right) \rightarrow \Delta_{2}^{\prime} \rightarrow B^{\prime}
$$

such that the normal form of C does not contain any t_{i} and

$$
\begin{array}{r}
A_{i}^{\prime}\left[w_{1}:=t_{1} \ldots w_{i-1}:=t_{i-1}\right] \simeq A_{i} \\
\left(\Delta_{2}^{\prime} \rightarrow B^{\prime}\right)\left[w_{1}:=t_{1} \ldots w_{m}:=t_{m}\right] \simeq \Delta_{2} \rightarrow B
\end{array}
$$

where $X \simeq Y$ is equality of the normal forms of X and Y. The type of the auxiliary function is then $\Delta_{1} \rightarrow C$.

- Check that $\Delta_{1} \rightarrow C$ is type correct, which is not guaranteed (see below).
- Add a function $f_{a u x}$, mutually recursive with f, with the definition

$$
\begin{aligned}
& f_{\text {aux }}: \Delta_{1} \rightarrow C \\
& f_{\text {aux }} p s_{11} q s_{1} p s_{21}=v_{1} \\
& \vdots \\
& f_{\text {aux }} p s_{1 n} q s_{n} p s_{2 n}=v_{n}
\end{aligned}
$$

where $q s_{i}=q_{i 1} \ldots q_{i m}$, and $p s_{1 i}: \Delta_{1}$ and $p s_{2 i}: \Delta_{2}$ are the patterns from $p s_{i}$ corresponding to the variables of $p s$. Note that due to the possible reordering of the partitioning of Δ into Δ_{1} and Δ_{2}, the patterns $p s_{1 i}$ and $p s_{2 i}$ can be in a different order from how they appear $p s_{i}$.

- Replace the with-abstraction by a call to $f_{\text {aux }}$ resulting in the final definition

$$
\begin{aligned}
& f: \Gamma \rightarrow B \\
& f p s=f_{\text {aux }} x s_{1} t s x s_{2}
\end{aligned}
$$

where $t s=t_{1} \ldots t_{m}$ and $x s_{1}$ and $x s_{2}$ are the variables from Δ corresponding to Δ_{1} and Δ_{2} respectively.

Examples

Below are some examples of with-abstractions and their translations.

```
postulate
    A : Set
    -+_}: :A->A A A
    T : A }->\mathrm{ Set
    mkT: }\forall\textrm{x}->\textrm{T}
    P}\quad:\forall\textrm{x}->\textrm{T}x->\mathrm{ Set
-- the type A of the with argument has no free variables, so the with
-- argument will come first
f
f
f
-- Generated with function
f-aux 1 : (w : A) (x y : A) (t : T w) -> T w
f-aux w w x y t = {!!}
-- x and p are not needed to type the with argument, so the context
-- is reordered with only y before the with argument
f}2:(x y : A) (p: P y (mkT y)) -> P y (mkT y)
f}2 x y p with mkT y
f
```

(continues on next page)

```
f-aux2 : (y : A) (w : T y) (x : A) (p : P y w) -> P y w
```

f-aux 2 y w x $\mathrm{p}=\{!!\}$
postulate
$\mathrm{H}: \forall \mathrm{x} y \rightarrow \mathrm{~T}(\mathrm{x}+\mathrm{y}) \rightarrow$ Set
-- Multiple with arguments are always inserted together, so in this case
-- ends up on the left since it's needed to type h and thus $x+y$ isn't
-- abstracted from the type of t
$f_{3}:(x y: A)(t: T(x+y))(h: H x y t) \rightarrow T(x+y)$
$f_{3} x y t h$ with $x+y \mid h$
$\mathrm{f}_{3} \mathrm{x} y \mathrm{y} \mathrm{h}\left|\mathrm{w}_{1} \quad\right| \mathrm{w}_{2}=\left\{!t: T(x+y)\right.$, goal: $\left.T \mathrm{w}_{1}!\right\}$

$f-\operatorname{aux}_{3} x$ y $t h w_{1} w_{2}=\{!!\}$
-- But earlier with arguments are abstracted from the types of later ones
$f_{4}:(x y: A)(t: T(x+y)) \rightarrow T(x+y)$
$f_{4} x y t$ with $x+y \mid t$
$f_{4} x y t\left|w_{1}\right| w_{2}=\left\{!t: T(x+y), w_{2}: T W_{1}, g o a l: T W_{1}!\right\}$
$f-\mathrm{aux}_{4}:(\mathrm{x} y: A) \quad(\mathrm{t}: \mathrm{T}(\mathrm{x}+\mathrm{y}))\left(\mathrm{w}_{1}: \mathrm{A}\right)\left(\mathrm{w}_{2}: \mathrm{T} \mathrm{w}_{1}\right) \rightarrow \mathrm{T} \mathrm{w}_{1}$
f-aux ${ }_{4}$ x y t $\mathrm{w}_{1} \mathrm{w}_{2}=\{!!\}$

III-typed with-abstractions

As mentioned above, generalisation does not always produce well-typed results. This happens when you abstract over a term that appears in the type of a subterm of the goal or argument types. The simplest example is abstracting over the first component of a dependent pair. For instance,

```
postulate
    A : Set
    B : A }->\mathrm{ Set
    H : (x : A) }->\textrm{B}x->\mathrm{ Set
```

```
bad-with : (p : N A B) }->\textrm{H}\mathrm{ (fst p) (snd p)
bad-with p with fst p
\cdots | _ = {!!}
```

Here, generalising over fst p results in an ill-typed application H w (snd p) and you get the following type error:

```
fst p != w of type A
when checking that the type (p : \Sigma A B) (w : A) -> H w (snd p) of
the generated with function is well-formed
```

This message can be a little difficult to interpret since it only prints the immediate problem (fst $p \quad!=w$) and the full type of the with-function. To get a more informative error, pointing to the location in the type where the error is, you can copy and paste the with-function type from the error message and try to type check it separately.

3.45 Without K

The option --without -K adds some restrictions to Agda's typechecking algorithm in order to ensure compatability with versions of type theory that do not support UIP (uniqueness of identity proofs), such as HoTT (homotopy type theory).
The option --with-K can be used to override a global --without-K in a file, by adding a pragma \{-\# OPTIONS --with-K \#-\}. This option is enabled by default.

3.45.1 Restrictions on pattern matching

When the option --without-K is enabled, then Agda only accepts certain case splits. More specifically, the unification algorithm for checking case splits cannot make use of the deletion rule to solve equations of the form $\mathrm{x}=$ x.

For example, the obvious implementation of the K rule is not accepted:

```
K : {A : Set } {x : A } (P : x \equiv x m Set) }
    P refl }->(x\equivx : x \equiv x) -> P x\equivx
K P p refl = p
```

Pattern matching with the constructor refl on the argument $x \equiv \mathrm{x}$ causes x to be unified with x , which fails because the deletion rule cannot be used when -- without -K is enabled.

On the other hand, the obvious implementation of the J rule is accepted:

```
J : {A: Set } (P:(x y : A) }->\textrm{P
```



```
J P p x .x refl = p x
```

Pattern matching with the constructor refl on the argument $x \equiv y$ causes x to be unified with y. The same applies to Christine Paulin-Mohring's version of the J rule:

```
J': {A:Set} {x:A} (P: (y : A) }->\textrm{S}:\textrm{X}\equiv\textrm{A}=\textrm{y}->\mathrm{ Set) }
    P x refl }->(y:A) (x\equivy : x = y) -> P y x\equivy
J' P p ._ refl = p
```

For more details, see Jesper Cockx's PhD thesis Dependent Pattern Matching and Proof-Relevant Unification [Cockx (2017)].

3.45.2 Restrictions on termination checking

When --without -K is enabled, Agda's termination checker restricts structural descent to arguments ending in data types or Size. Likewise, guardedness is only tracked when result type is data or record type:

```
data }\perp\mathrm{ : Set where
mutual
    data WOne : Set where wrap : FOne }->\mathrm{ WOne
    FOne = & -> WOne
postulate iso : WOne \equiv FOne
noo : (X : Set) }->\mathrm{ (WOne 三 X) }->\textrm{X}
noo .WOne refl (wrap f) = noo FOne iso f
```

noo is rejected since at type X the structural descent $f<$ wrap f is discounted --without-K:

```
data Pandora : Set where
    C : }~\perp->\mathrm{ Pandora
postulate foo : }\perp\equiv\mathrm{ Pandora
loop : (A : Set) }->\mathrm{ A 三 Pandora }->\mathrm{ A
loop .Pandora refl = C (# (loop \perp foo))
```

loop is rejected since guardedness is not tracked at type $A--$ without - K.
See issues \#1023, \#1264, \#1292.

3.45.3 Restrictions on universe levels

When --without-K is enabled, some indexed datatypes must be defined in a higher universe level. In particular, the types of all indices should fit in the sort of the datatype.
For example, usually (i.e. $--w i t h-K$) Agda allows the following definition of equality:


```
    refl : x \equiv0 x
```

However, with --without-K it must be defined at a higher universe level:

```
data_\equiv'_{l} {A: Set l}:A }->\textrm{A}|\textrm{A}->\mathrm{ Set { where
    refl: {x : A} }->\textrm{x}\equiv\textrm{X
```


chapter 4

4.1 Automatic Proof Search (Auto)

Agda supports (since version 2.2.6) the command Auto, that searches for type inhabitants and fills a hole when one is found. The type inhabitant found is not necessarily unique.

Auto can be used as an aid when interactively constructing terms in Agda. In a system with dependent types it can be meaningful to use such a tool for finding fragments of, not only proofs, but also programs. For instance, giving the type signature of the map function over vectors, you will get the desired function as the first solution.
The tool is based on a term search implementation independent of Agda called Agsy. Agsy is a general purpose search algorithm for a dependently typed language similar to Agda. One should not expect it to handle large problems of any particular kind, but small enough problems of almost any kind.

Any solution coming from Auto is checked by Agda. Also, the main search algorithm has a timeout mechanism. Therefore, there is little harm in trying Auto and it might save you key presses.

4.1.1 Usage

The tool is invoked by placing the cursor on a hole and choosing Auto in the goal menu or pressing $C-c \quad C-a$. Agsy's behaviour can be changed by using various options which are passed directly in the hole.

Option	Meaning
$-\mathrm{t} \quad N$	Set timeout to N seconds
-c	Allow Agsy to use case-split
-d	Attempt to disprove the goal
$I D$	Use definition $I D$ as a hint
-m	Use the definitions in the current module as hints
-r	Use the unqualified definitions in scope as hints
$-l$	List up to ten solutions, does not commit to any
-s	N

Giving no arguments is fine and results in a search with default parameters. The search carries on until either a (not necessarily unique) solution is found, the search space is fully (and unsuccessfully) explored or it times out (one second by default). Here follows a list of the different modes and parameters.

Case split

Auto normally only tries to find a term that could replace the current hole. However, if the hole constitutes the entire RHS of the clause (same as for the make-case command), you can instruct Auto to try case splitting by writing (since version 2.2.8) - c.

Note that if a solution is found the whole file will be reloaded (as for make-case) resulting in a delay. Case splitting cannot yet be combined with -1 or $-\mathrm{s}<\mathrm{n}>$.

Equality reasoning

If the constants \equiv_{-}begin_ $\left.\left.\equiv_{-}\right\rangle_{-}\right\rangle_{-}$sym cong from the standard library are in scope, then Auto will do equality reasoning using these constructs. However, it will not do anything more clever than things like not nesting several sym or cong. Hence long chains of equalities should not be expected and required arithmetical rules have to be given as hints.

Hints

Auto does not by default try using constants in scope. If there is a lemma around that might help in constructing the term you can include it in the search by giving hints. There are two ways of doing this. One way is to provide the exact list of constants to include. Such a list is given by writing a number of constant names separated by space: <hint1> <hint2>

The other way is to write $-m$. This includes all constants in scope which are defined or postulated in the innermost module surrounding the current hole. It is also possible to combine $-m$ with a list of named constants (not included by $-m$).
There are a few exceptions to what you have to specify as hints:

- Datatypes and constants that can be deduced by unifying the two sides of an equality constraint can be omitted. E.g., if the constraint? = List A occurs during the search, then refining ? to List . . . will happen without having to provide List as a hint. The constants that you can leave out overlap more or less with the ones appearing in hidden arguments, i.e. you wouldn't have written them when giving the term by hand either.
- Constructors and projection functions are automatically tried, so should never be given as hints.
- Recursive calls, although currently only the function itself, not all functions in the same mutual block.

Timeout

The timeout is one second by default but can be changed by adding $-\mathrm{t}<\mathrm{n}>$ to the parameters, where $<\mathrm{n}>$ is the number of seconds.

Listing and choosing among several solutions

Normally, Auto replaces the hole with the first solution found. If you are not happy with that particular solution, you can list the ten (at most) first solutions encountered by including the flag -1.

You can then pick a particular solution by writing $-\mathrm{s}<\mathrm{n}>$ where $<\mathrm{n}>$ is the number of solutions to skip (as well as the number appearing before the solution in the list). The options -1 and $-\mathrm{s}<\mathrm{n}>$ can be combined to list solutions other than the ten first ones.

Disproving

If you are uncertain about the validity of what you are trying to prove, you can use Auto to try to find a counterproof. The flag - d makes Auto negate the current goal and search for a term disproving it. If such a term is found, it will be displayed in the info buffer. The flag -d can be combined with -1 and $-1-s<n>$.

Auto refine / suggest

There is a special mode for searching (part of) the scope of constants for possible refinement candidates. The flag $-r$ chooses this mode. By default all constants which are in scope unqualified are included.

The constants that matches the current goal are sorted in order of how many constructs their result type contains. This means that the constants which in some sense match the goal most specifically will appear first and the most general ones last. By default, Auto will present a list of candidates, rather than refining using the topmost constant. To select one of them for refinement, combine $-r$ with $-s<n>$. In order to list constants other than the ten first ones, write $-r$ - l - $\mathrm{s}<\mathrm{n}>$.

The auto refine feature has little to do with the rest of the Auto tool. If it turns out to be useful it could be improved and made into a separate Emacs mode command.

Dependencies between meta variables

If the goal type or type of local variables contain meta variables, then the constraints for these are also included in the search. If a solution is found it means that Auto has also found solutions for the occurring meta variables. Those solutions will be inserted into your file along with that of the hole from where you called Auto. Also, any unsolved equality constraints that contain any of the involved meta variables are respected in the search.

4.1.2 Limitations

- Irrelevance is not yet respected. Agsy will happily use a parameter marked as irrelevant and does not disregard irrelevant arguments when comparing terms.
- Records that lack a constructor name are still deconstructed when case splitting, but the name of the record type is used instead of a constructor name in the resulting pattern.
- Literals representing natural numbers are supported (but any generated natural number will be given in constructor form). Apart from this, literals are not supported.
- Primitive functions are not supported.
- Copatterns are not supported.
- Termination checking for recursive calls is done locally, so a non-terminating set of clauses might be sent back to Agda.
- Agsy currently does not automatically pick a datatype when instantiating types. A frequently occurring situation is when you try to disprove a generic property. Then Agsy must come up with a particular type as part of the disproof. You can either fix your generic type to e.g. Nat or Fin n (for an arbitrary n if you wish), or you give Nat or Fin as a hint to the search.
- Case split mode currently does not do case on expressions (with).
- Case split mode sometimes gives a unnecessarily complex RHS for some clause when the solution consists of several clauses.
- Agsy has universe subtyping, so sometimes suggests solutions not accepted by Agda.
- Universe polymorphism is only partially supported. Agsy may fail when trying to construct universe polymorphic definitions, but will probably succeed (with respect to this) when constructing terms which refer to, or whose type is defined in terms of, universe polymorphic definitions.
- In case split and disproving modes, the current goal may not depend on any other meta variables. For disproving mode this means that there may be implicitly universally quantified but not existentially quantified stuff.
- Searching for simultaneous solutions of several holes does not combine well with parameterised modules and recursive calls.

4.1.3 User feedback

When sending bug reports, please use Agda's bug tracker. Apart from that, receiving nice examples (via the bug tracker) would be much appreciated. Both such examples which Auto does not solve, but you have a feeling it's not larger than for that to be possible. And examples that Auto only solves by increasing timeout. The examples sent in will be used for tuning the heuristics and hopefully improving the performance.

4.2 Command-line options

4.2.1 Command-line options

Agda accepts the following options.

General options

--help [=\{TOPIC \}], -? [\{TOPIC \}]
Show basically this help, or more help about TOP IC. Current topics available: warning.
--interaction
For use with the Emacs mode (no need to invoke yourself).

--interaction-json

New in version 2.6.1.
For use with other editors such as Atom (no need to invoke yourself).
--interactive, -I
Start in interactive mode (no longer supported).
--no-projection-like
New in version 2.6.1.
Turn off the analysis whether a type signature likens that of a projection.
Projection-likeness is an optimization that reduces the size of terms by dropping parameter-like reconstructible function arguments. Thus, it is advisable to leave this optimization on, the flag is meant for debugging Agda.
--only-scope-checking
Only scope-check the top-level module, do not type-check it (see Quicker generation without typechecking).
--version, -V
Show version number.

--print-agda-dir

New in version 2.6.2.
Outputs the root (AGDA_DIR) of the directory structure holding Agda's data files such as core libraries, style files for the backends etc.

Compilation

See Compilers for backend-specific options.
--compile-dir=\{DIR \}
Set DIR as directory for compiler output (default: the project root).

--no-main

Do not treat the requested module as the main module of a program when compiling.
--with-compiler=\{PATH\}
Set PATH as the executable to call to compile the backend's output (default: ghc for the GHC backend).

Generating highlighted source code

--count-clusters

Count extended grapheme clusters when generating LaTeX code (see Counting Extended Grapheme Clusters).
--css=\{URL $\}$
Set URL of the CSS file used by the HTML files to URL (can be relative).
--dependency-graph=\{FILE $\}$
Generate a Dot file FILE with a module dependency graph.

--html

Generate HTML files with highlighted source code (see Generating HTML).
--html-dir=\{DIR\}
Set directory in which HTML files are placed to DIR (default: html).
--html-highlight=[code, all, auto]
Whether to highlight non-Agda code as comments in generated HTML files (default: all; see Generating HTML).
--latex
Generate LaTeX with highlighted source code (see Generating LaTeX).
--latex-dir=\{DIR \}
Set directory in which LaTeX files are placed to DIR (default: latex).
--vim
Generate Vim highlighting files.

Imports and libraries

(see Library Management)
--ignore-all-interfaces
Ignore all interface files, including builtin and primitive modules; only use this if you know what you are doing!
--ignore-interfaces
Ignore interface files (re-type check everything, except for builtin and primitive modules).
--include-path $=\{D I R\},-\mathbf{i}=\{D I R\}$
Look for imports in DIR.
--library $=\{D I R\},-\mathbf{l}=\{L I B\}$
Use library LIB.
--library-file=\{FILE $\}$
Use $\{F I L E\}$ instead of the standard libraries file.

--local-interfaces

New in version 2.6.1.
Read and write interface files next to the Agda files they correspond to (i.e. do not attempt to regroup them in a _build/ directory at the project's root).
--no-default-libraries
Don't use default library files.
--no-libraries
Don't use any library files.

4.2.2 Command-line and pragma options

The following options can also be given in .agda files using the OPTIONS pragma.

Caching

--caching, --no-caching
Enable [disable] caching of typechecking (default).
Default: --caching

Printing and debugging

--no-unicode
Don't use unicode characters to print terms.
--show-implicit
Show implicit arguments when printing.
--show-irrelevant
Show irrelevant arguments when printing.
--verbose $=\{N\}, \quad-\mathbf{v}=\{N\}$
Set verbosity level to N.

Copatterns and projections

--copatterns, --no-copatterns
Enable [disable] definitions by copattern matching (see Copatterns).
Default: --copatterns
--postfix-projections
Make postfix projection notation the default.

Experimental features

```
--confluence-check, --local-confluence-check
```

New in version 2.6.1.
Enable optional (global or local) confluence checking of REWRITE rules (see Confluence checking).
--cubical
Enable cubical features. Turns on --without-K (see Cubical).

--erased-cubical

Enable a variant of Cubical Agda, and turn on --without-K.
--experimental-irrelevance
Enable potentially unsound irrelevance features (irrelevant levels, irrelevant data matching) (see Irrelevance).
--injective-type-constructors
Enable injective type constructors (makes Agda anti-classical and possibly inconsistent).
--rewriting
Enable declaration and use of REWRITE rules (see Rewriting).
--allow-exec
Enable system calls during type checking (see Reflection).

Errors and warnings

--allow-incomplete-matches
New in version 2.6.1.
Succeed and create interface file regardless of incomplete pattern-matching definitions. See, also, the NON_COVERING pragma.
--allow-unsolved-metas
Succeed and create interface file regardless of unsolved meta variables (see Metavariables).
--no-positivity-check
Do not warn about not strictly positive data types (see Positivity Checking).
--no-termination-check
Do not warn about possibly nonterminating code (see Termination Checking).

```
--warning={GROUP|FLAG}, -W {GROUP|FLAG }
```

Set warning group or flag (see Warnings).

Pattern matching and equality

```
--exact-split, --no-exact-split
```

Require [do not require] all clauses in a definition to hold as definitional equalities unless marked CATCHALL (see Case trees).

Default: --no-exact-split

--no-eta-equality

Default records to no-eta-equality (see Eta-expansion).

```
--no-flat-split
```

New in version 2.6.1.
Disable pattern matching on @b arguments (see Pattern Matching on @b).

--no-pattern-matching

Disable pattern matching completely.

--with-K

Overrides a global --without $-K$ in a file (see Without K).
--without-K
Disables definitions using Streicher's K axiom (see Without K).

--keep-pattern-variables

New in version 2.6.1.
Prevent interactive case splitting from replacing variables with dot patterns (see Dot patterns).

Search depth and instances

--instance-search-depth=\{N\}

Set instance search depth to N (default: 500; see Instance Arguments),

--inversion-max-depth $=\{N\}$

Set maximum depth for pattern match inversion to N (default: 50). Should only be needed in pathological cases.
--termination-depth $=\{\mathrm{N}\}$
Allow termination checker to count decrease/increase upto N (default: 1; see Termination Checking).
--overlapping-instances, --no-overlapping-instances
Consider [do not consider] recursive instance arguments during pruning of instance candidates.
Default:--no-overlapping-instances

Other features

--double-check
Enable double-checking of all terms using the internal typechecker.
--guardedness, --no-guardedness
Enable [disable] constructor-based guarded corecursion (see Coinduction).
The option --guardedness is inconsistent with sized types and it is turned off by --safe (but can be turned on again, as long as not also --sized-types is on).
Default: --guardedness
--irrelevant-projections, --no-irrelevant-projections
New in version 2.5.4.
Enable [disable] projection of irrelevant record fields (see Irrelevance). The option --irrelevant-projections makes Agda inconsistent.

Default (since version 2.6.1): --no-irrelevant-projections
--auto-inline
Turn on automatic compile-time inlining. See The INLINE and NOINLINE pragmas for more information.
--no-auto-inline
Disable automatic compile-time inlining (default). Only definitions marked INLINE will be inlined.

--no-fast-reduce

Disable reduction using the Agda Abstract Machine.

--call-by-name

Disable call-by-need evaluation in the Agda Abstract Machine.

--no-forcing

Disable the forcing optimisation. Since Agda 2.6.1 is a pragma option.

--no-print-pattern-synonyms

Always expand Pattern Synonyms during printing. With this option enabled you can use pattern synonyms freely, but Agda will not use any pattern synonyms when printing goal types or error messages, or when generating patterns for case splits.

```
--no-syntactic-equality
```

Disable the syntactic equality shortcut in the conversion checker.

--safe

Disable postulates, unsafe OPTIONS pragmas and primTrustMe. Turns off --sized-types and --guardedness (at most one can be turned back on again) (see Safe Agda).
--sized-types, --no-sized-types
Enable [disable] sized types (see Sized Types).
The option--sized-types is inconsistent with constructor-based guarded corecursion and it is turned off by --safe (but can be turned on again, as long as not also --guardedness is on).

Default: --sized-types

--type-in-type

Ignore universe levels (this makes Agda inconsistent; see type-in-type).
--omega-in-omega
Enable typing rule Setw : Setw (this makes Agda inconsistent; see omega-in-omega).
--universe-polymorphism, --no-universe-polymorphism
Enable [disable] universe polymorphism (see Universe Levels).
Default:--universe-polymorphism
--cumulativity, --no-cumulativity
New in version 2.6.1.
Enable [disable] cumulative subtyping of universes, i.e. if $A:$ Set i then also $A: \operatorname{Set} j$ for all $j>=i$. Implies -subtyping.

Default: --no-cumulativity
--subtyping, --no-subtyping
New in version 2.6.1.
Enable [disable] subtyping rules globally, including subtyping for irrelevance, erasure (@0) and flat (@b) modalities.

Default: --no-subtyping
--no-import-sorts
New in version 2.6.2.
Disable the implicit statement open import Agda.Primitive using (Set; Prop) at the start of each top-level Agda module.

Warnings

The $-W$ or --warning option can be used to disable or enable different warnings. The flag $-W$ error (or --warning=error) can be used to turn all warnings into errors, while $-W$ noerror turns this off again.
A group of warnings can be enabled by $-W$ \{group , where group is one of the following:

all

All of the existing warnings.
warn.
Default warning level

ignore

Ignore all warnings.
The command agda --help=warning provides information about which warnings are turned on by default.
Individual warnings can be turned on and off by $-W$ \{Name \} and $-W$ \{noName \} respectively. The flags available are:

AbsurdPatternRequiresNoRHS

RHS given despite an absurd pattern in the LHS.

CantGeneralizeOverSorts

Attempt to generalize over sort metas in 'variable' declaration.

CoInfectiveImport

Importing a file not using e.g. --safe from one which does.

CoverageIssue

Failed coverage checks.

CoverageNoExactSplit

Failed exact split checks.

DeprecationWarning

Feature deprecation.

EmptyAbstract

Empty abstract blocks.

EmptyInstance

Empty instance blocks.

EmptyMacro

Empty macro blocks.

EmptyMutual

Empty mutual blocks.

EmptyPostulate

Empty postulate blocks.

EmptyPrimitive

Empty primitive blocks.

EmptyPrivate

Empty private blocks.

EmptyRewritePragma

Empty REWRITE pragmas.

IllformedAsClause

Illformed as-clauses in import statements.

InfectiveImport

Importing a file using e.g. :option;'-cubical‘ into one which doesn't.

InstanceNoOutputTypeName

Instance arguments whose type does not end in a named or variable type are never considered by instance search.

InstanceArgWithExplicitArg

Instance arguments with explicit arguments are never considered by instance search.

InstanceWithExplicitArg

Instance declarations with explicit arguments are never considered by instance search.

InvalidCatchallPragma

CATCHALL pragmas before a non-function clause.

InvalidNoPositivityCheckPragma

No positivity checking pragmas before non-data', record or mutual blocks.

InvalidTerminationCheckPragma

Termination checking pragmas before non-function or mutual blocks.

InversionDepthReached

Inversions of pattern-matching failed due to exhausted inversion depth.

LibUnknownField

Unknown field in library file.

MissingDefinitions

Names declared without an accompanying definition.

ModuleDoesntExport

Names mentioned in an import statement which are not exported by the module in question.

NotAllowedInMutual

Declarations not allowed in a mutual block.

NotStrictlyPositive

Failed strict positivity checks.

OldBuiltin

Deprecated BUILTIN pragmas.

OverlappingTokensWarning

Multi-line comments spanning one or more literate text blocks.

PolarityPragmasButNotPostulates

Polarity pragmas for non-postulates.

PragmaCompiled

COMPILE pragmas not allowed in safe mode.

PragmaCompileErased

COMPILE pragma targeting an erased symbol.

PragmaNoTerminationCheck

NO_TERMINATION_CHECK pragmas are deprecated.

RewriteMaybeNonConfluent

Failed confluence checks while computing overlap.

RewriteNonConfluent

Failed confluence checks while joining critical pairs.
SafeFlagNonTerminating
NON_TERMINATING pragmas with the safe flag.

SafeFlagNoPositivityCheck

NO_POSITIVITY_CHECK pragmas with the safe flag.

SafeFlagNoUniverseCheck

NO_UNIVERSE_CHECK pragmas with the safe flag.

SafeFlagPolarity

POLARITY pragmas with the safe flag.

SafeFlagPostulate

postulate blocks with the safe flag

SafeFlagPragma

Unsafe OPTIONS pragmas with the safe flag.

SafeFlagTerminating

TERMINATING pragmas with the safe flag.
SafeFlagWithoutKFlagPrimEraseEquality
primEraseEquality used with the safe and without-K flags.

ShadowingInTelescope

Repeated variable name in telescope.

TerminationIssue

Failed termination checks.

UnknownFixityInMixfixDecl

Mixfix names without an associated fixity declaration.

UnknownNamesInFixityDecl

Names not declared in the same scope as their syntax or fixity declaration.

UnknownNamesInPolarityPragmas

Names not declared in the same scope as their polarity pragmas.

UnreachableClauses

Unreachable function clauses.

UnsolvedConstraints

Unsolved constraints.

UnsolvedInteractionMetas

Unsolved interaction meta variables.

UnsolvedMetaVariables

Unsolved meta variables.

UselessAbstract

abstract blocks where they have no effect.

UselessInline

INLINE pragmas where they have no effect.

UselessInstance

instance blocks where they have no effect.

UselessPrivate

private blocks where they have no effect.

UselessPublic

public blocks where they have no effect.

WithoutKFlagPrimEraseEquality

primEraseEquality used with the without-K flags.

WrongInstanceDeclaration

Terms marked as eligible for instance search should end with a name.

4.2.3 Examples

Run Agda with all warnings enabled, except for warnings about empty abstract blocks:

```
agda -W all --warning=noEmptyAbstract file.agda
```

Run Agda on a file which uses the standard library. Note that you must have already created a libraries file as described in Library Management

```
agda -l standard-library -i. file.agda
```

(Or if you have added standard-library to your defaults file, simply agda file.agda)

4.2.4 Consistency checking of options used

Agda checks that options used in imported modules are consistent with each other.
An infective option is an option that if used in one module, must be used in all modules that depend on this module. The following options are infective:

- --cubical
- --prop
- --rewriting

A coinfective option is an option that if used in one module, must be used in all modules that this module depends on. The following options are coinfective:

- --safe
- --without-K
- --no-universe-polymorphism
- --no-sized-types
- --no-guardedness

Agda records the options used when generating an interface file. If any of the following options differ when trying to load the interface again, the source file is re-typechecked instead:

- --termination-depth
- --no-unicode
- --allow-unsolved-metas
- --allow-incomplete-matches
- --no-positivity-check
- --no-termination-check
- --type-in-type
- --omega-in-omega
- --no-sized-types
- --no-guardedness
- --injective-type-constructors
- --prop
- --no-universe-polymorphism
- --irrelevant-projections
- --experimental-irrelevance
- --without-K
- --exact-split
- --no-eta-equality
- --rewriting
- --cubical
- --overlapping-instances
- --safe
- --double-check
- --no-syntactic-equality
- --no-auto-inline
- --no-fast-reduce
- --instance-search-depth
- --inversion-max-depth
- --warning
- --allow-exec

4.3 Compilers

- Backends
- GHC Backend
- JavaScript Backend
- Optimizations
- Builtin natural numbers
- Erasable types

See also Foreign Function Interface.

4.3.1 Backends

GHC Backend

The GHC backend translates Agda programs into GHC Haskell programs.

Usage

The backend can be invoked from the command line using the flag --compile:

```
agda --compile [--compile-dir=<DIR>] [--ghc-flag=<FLAG>]
    [--ghc-strict-data] [--ghc-strict] <FILE>.agda
```

When the flag --ghc-strict-data is used inductive data and record constructors are compiled to constructors with strict arguments. (This does not apply to certain builtin types-lists, the maybe type, and some types related to reflection-and might not apply to types with COMP ILE GHC . . . = data . . pragmas.)
When the flag --ghc-strict is used the GHC backend generates mostly strict code. Note that functions might not be strict in unused arguments, and that function definitions coming from COMP ILE GHC pragmas are not affected. This flag implies --ghc-strict-data, and the exceptions of that flag applies to this flag as well. (Note that this option requires the use of GHC 9 or later.)

Pragmas

Example

The following "Hello, World!" example requires some Built-ins and uses the Foreign Function Interface:

```
module HelloWorld where
open import Agda.Builtin.IO
open import Agda.Builtin.Unit
open import Agda.Builtin.String
postulate
    putStrLn : String }->\mathrm{ IO T
{-# FOREIGN GHC import qualified Data.Text.IO as Text #-}
{-# COMPILE GHC putStrLn = Text.putStrLn #-}
main : IO T
main = putStrLn "Hello, World!"
```

After compiling the example

```
agda --compile HelloWorld.agda
```

you can run the HelloWorld program which prints Hello, World!.

Warning: Frequent error when compiling: Float requires the ieee754 haskell library. Usually cabal install ieee754 in the command line does the trick.

JavaScript Backend

The JavaScript backend translates Agda code to JavaScript code.

Usage

The backend can be invoked from the command line using the flag --js:

```
agda --js [--js-optimize] [--js-minify] [--compile-dir=<DIR>] <FILE>.agda
```

The --js-optimize flag makes the generated JavaScript code typically faster and less readable.
The --js-minify flag makes the generated JavaScript code smaller and less readable.

4.3.2 Optimizations

Builtin natural numbers

Builtin natural numbers are represented as arbitrary-precision integers. The builtin functions on natural numbers are compiled to the corresponding arbitrary-precision integer functions.

Note that pattern matching on an Integer is slower than on an unary natural number. Code that does a lot of unary manipulations and doesn't use builtin arithmetic likely becomes slower due to this optimization. If you find that this is the case, it is recommended to use a different, but isomorphic type to the builtin natural numbers.

Erasable types

A data type is considered erasable if it has a single constructor whose arguments are all erasable types, or functions into erasable types. The compilers will erase

- calls to functions into erasable types
- pattern matches on values of erasable type

At the moment the compilers only have enough type information to erase calls of top-level functions that can be seen to return a value of erasable type without looking at the arguments of the call. In other words, a function call will not be erased if it calls a lambda bound variable, or the result is erasable for the given arguments, but not for others.
Typical examples of erasable types are the equality type and the accessibility predicate used for well-founded recursion:

```
data_\equiv_ {a} {A: Set a} (x : A) : A }->\mathrm{ Set a where
    refl : x \equiv x
data Acc {a} {A: Set a} (_<_ : A ->A A Set a) (x : A) : Set a where
    acc : (\forally H y < x }->\mathrm{ Acc__<_ y) }->\mathrm{ Acc__<_ x
```

The erasure means that equality proofs will (mostly) be erased, and never looked at, and functions defined by wellfounded recursion will ignore the accessibility proof.

4.4 Emacs Mode

Agda programs are commonly edited using Emacs which is explained in this section. Other editors with interactive support for Agda include Atom (agda-mode on Atom), Visual Studio Code (agda-mode on VS Code), and Vim (agdavim).

To edit a module in Emacs (assuming you have installed Agda and the Emacs mode properly), open a file ending in . agda and load it by pressing $\mathrm{C}-\mathrm{C} \quad \mathrm{C}-1$ (other commands are listed under Notation for key combinations below). This will apply syntax highlighting to the code and display any errors in a separate buffer. Agda uses certain background colors to indicate specific issues with the code, see Background highlighting below.

4.4.1 Menus

There are two main menus in the system:

- A main menu called Agda2 which is used for global commands.
- A context sensitive menu which appears if you right-click in a hole.

The menus contain more commands than the ones listed above. See global and context sensitive commands.

4.4.2 Configuration

If you want to you can customise the Emacs mode. Just start Emacs and type the following:

```
M-x load-library RET agda2-mode RET
M-x customize-group RET agda2 RET
```

If you want some specific settings for the Emacs mode you can add them to agda2-mode-hook. For instance, if you do not want to use the Agda input method (for writing various symbols like $\forall \geq \mathbb{N} \rightarrow \pi \llbracket \rrbracket$) you can add the following to your .emacs:

```
(add-hook 'agda2-mode-hook
    ' (lambda ()
        ; If you do not want to use any input method:
    (deactivate-input-method)
    ; (In some versions of Emacs you should use
    ; inactivate-input-method instead of
    ; deactivate-input-method.)
```

Note that, on some systems, the Emacs mode changes the default font of the current frame in order to enable many Unicode symbols to be displayed. This only works if the right fonts are available, though. If you want to turn off this feature, then you should customise the agda2-fontset-name variable.
The colors that are used to highlight Agda syntax and errors can be adjusted by typing M-x customize-group RET agda2-highlight RET in Emacs and following the instructions.

4.4.3 Keybindings

Notation for key combinations

The following notation is used when describing key combinations:
$\mathbf{C - c}$ means hitting the c key while pressing the Ctrl key.
$\mathbf{M - x}$ means hitting the x key while pressing the Meta key, which is called Alt on many systems. Alternatively one can type Escape followed by x (in separate key strokes).
RET is the Enter, Return or Ξ key.
SPC is the space bar.
Commands working with terms or types can be prefixed with $\mathrm{C}-\mathrm{u}$ to compute without further normalisation, with $\mathrm{C}-\mathrm{u}$ $\mathrm{C}-\mathrm{u}$ to compute normal forms, and $\mathrm{C}-\mathrm{u} \quad \mathrm{C}-\mathrm{u} \quad \mathrm{C}-\mathrm{u}$ to compute weak-head normal forms.

Global commands

C-c C-1 Load file. This type-checks the contents of the file, and replaces each occurrence of a question mark ? or a hole marker $\{!!\}$ by a freshly created hole.
$\mathbf{C - c} \mathbf{C - x} \mathbf{C - c}$ Compile file. This will compile an Agda program with a main function using a given backend (the GHC backend is used by default).

C-c C-x C-q Quit, kill the Agda process
$\mathbf{C - c} \quad \mathbf{C}-\mathbf{x} \quad \mathbf{C}-\mathbf{r}$ Kill and restart the Agda process
C-c C-x C-a Abort a command
$\mathbf{C - c} \mathbf{C - x} \quad \mathbf{C}-\mathbf{d}^{(R e m o v e ~ g o a l s ~ a n d ~ h i g h l i g h t i n g ~(d e a c t i v a t e) ~}$
$\mathbf{C - c} \quad \mathbf{C}-\mathbf{x} \quad \mathbf{C}-\mathrm{h}$ Toggle display of hidden arguments
C-c C-x C-i Toggle display of irrelevant arguments
$\mathrm{C}-\mathrm{c} \mathrm{C}=$ = Show constraints
C-c C-s Solve constraints
C-c C-? Show all goals
C-c C-f Move to next goal (forward)
$\mathbf{C - c} \mathbf{C - b}$ Move to previous goal (backwards)
$\mathbf{C - c} \mathbf{C - d}$ Infer (deduce) type. The system asks for a term and infers its type. When executed inside a hole, it will instead take the contents of the hole as input (if any).

C-c C-O Module contents
$\mathbf{C - c} \mathbf{C - z}$ Search Definitions in Scope
$\mathbf{C - c} \mathbf{C - n}$ Compute normal form. The system asks for a term which is then evaluated. When executed inside a hole, it will instead take the contents of the hole as input (if any).
$\mathbf{C - u} \mathbf{C - c} \mathbf{C - n}$ Compute normal form, ignoring abstract
$\mathbf{C - u} \mathbf{C - u} \mathbf{C - c} \mathbf{C - n}$ Compute and print normal form of show <expression>
$\mathbf{C - C} \mathbf{C - x ~ M - ; ~ C o m m e n t / u n c o m m e n t ~ r e s t ~ o f ~ b u f f e r ~}$
$\mathbf{C - c} \mathbf{C - x} \mathbf{C - s}$ Switch to a different Agda version

Commands in context of a goal

Commands expecting input (for example which variable to case split) will either use the text inside the goal or ask the user for input.

C-C C-SPC Give (fill goal)
$\mathbf{C - c} \mathbf{C}-\boldsymbol{r}$ Refine. Checks whether the return type of the expression e in the hole matches the expected type. If so, the hole is replaced by e $\} 1 \ldots$. $\}$ n, where a sufficient number of new holes have been inserted. If the hole is empty, then the refine command instead inserts a lambda or constructor (if there is a unique type-correct choice).
$\mathrm{C}-\mathrm{c} \quad \mathrm{C}-\mathrm{m}$ Elaborate and Give (fill goal with normalized expression). Takes the same $\mathrm{C}-\mathrm{u}$ prefixes as $\mathrm{C}-\mathrm{C} \mathrm{C}-\mathrm{n}$.
C-c C-a Automatic Proof Search (Auto)
$\mathbf{C - c} \mathbf{C - c}$ Case split. If the cursor is positioned in a hole which denotes the right hand side of a definition, then this command automatically performs pattern matching on variables of your choice. When given several variables (separated by spaces) it will case split on the first and then continue by case splitting on the remaining variables in each newly created clause. When given no variables, it will introduce a new variable if the target type is a function type, or introduce a new copattern match if the target type is a record type (see Copatterns). When given the special symbol ., it will expand the ellipsis . . . in the clause (see With-Abstraction).
C-c C-h Compute type of helper function and add type signature to kill ring (clipboard)
C-c C-t Goal type
C-c C-e Context (environment)
C-c C-d Infer (deduce) type
$\mathbf{C - c} \mathbf{C -}$, Goal type and context. Shows the goal type, i.e. the type expected in the current hole, along with the types of locally defined identifiers.

C-c C-. Goal type, context and inferred type
C-c C-; Goal type, context and checked term
C-c C-O Module contents
C-c C-n Compute normal form
$\mathbf{C - u} \mathbf{C - c} \mathbf{C - n}$ Compute normal form, ignoring abstract
$\mathbf{C - u} \mathbf{C - u} \mathbf{C - c} \mathbf{C - n}$ Compute and print normal form of show <expression>
C-c C-w Why in scope, given a defined name returns how it was brought into scope and its definition

Other commands

TAB Indent current line, cycles between points
S-TAB Indent current line, cycles in opposite direction
$\mathbf{M}-$. Go to definition of identifier under point
Middle mouse button Go to definition of identifier clicked on
M-* Go back (Emacs < 25.1)
M-, Go back (Emacs ≥ 25.1)

4.4.4 Unicode input

How can I write Unicode characters using Emacs?

The Agda Emacs mode comes with an input method for easily writing Unicode characters. Most Unicode character can be input by typing their corresponding TeX/LaTeX commands, eg. typing \backslash lambda will input λ. Some characters
have key bindings which have not been taken from TeX/LaTeX (typing $\backslash \mathrm{bN}$ results in \mathbb{N} being inserted, for instance), but all bindings start with \backslash.

To see all characters you can input using the Agda input method type M-x describe-input-method RET Agda or type $M-x$ agda-input-show-translations RET RET (with some exceptions in certain versions of Emacs).
If you know the Unicode name of a character you can input it using M-x ucs-insert RET (which supports tabcompletion) or C-x 8 RET. Example: Type $C-x 8$ RET not SPACE a SPACE sub TAB RET to insert the character "NOT A SUBSET OF" $(\not \subset)$.
(The Agda input method has one drawback: if you make a mistake while typing the name of a character, then you need to start all over again. If you find this terribly annoying, then you can use Abbrev mode instead. However, note that Abbrev mode cannot be used in the minibuffer, which is used to give input to many Agda and Emacs commands.)

The Agda input method can be customised via M-x customize-group RET agda-input.

OK, but how can I find out what to type to get the ... character?

To find out how to input a specific character, eg from the standard library, position the cursor over the character and type $M-x$ describe-char or $C-u \quad C-x=$.
For instance, for :: I get the following:

```
            character: :: (displayed as ::) (codepoint 8759, #o21067, #x2237)
    preferred charset: unicode (Unicode (ISO10646))
code point in charset: 0x2237
                        script: symbol
                        syntax: w which means: word
            category: .:Base, c:Chinese
            to input: type "\::" with Agda input method
        buffer code: #xE2 #x88 #xB7
            file code: #xE2 #x88 #xB7 (encoded by coding system utf-8-unix)
        display: by this font (glyph code)
    x:-misc-fixed-medium-r-normal--20-200-75-75-c-100-iso10646-1 (#x2237)
Character code properties: customize what to show
    name: PROPORTION
    general-category: Sm (Symbol, Math)
    decomposition: (8759) ('::')
There are text properties here:
    fontified t
```

Here it says that I can type $\backslash:$: to get a :: If there is no "to input" line, then you can add a key binding to the Agda input method by using $M-x$ customize-variable RET agda-input-user-translations.

Show me some commonly used characters

Many common characters have a shorter input sequence than the corresponding TeX command:

- Arrows: $\backslash r$ - for \rightarrow. You can replace r with another direction: u, d, l. Eg. $\backslash d-$ for \downarrow. Replace - with $=$ or $==$ to get a double and triple arrows.
- Greek letters can be input by $\backslash \mathrm{G}$ followed by the first character of the letters Latin name. Eg. $\backslash \mathrm{Gl}$ will input λ while $\backslash \mathrm{GL}$ will input Λ.
- Negation: you can get the negated form of many characters by appending n to the name. Eg. while \backslash ni inputs \ni, \backslash nin will input $\not \supset$.
- Subscript and superscript: you can input subscript or superscript forms by prepending the character with $_{-}$(subscript) or \backslash^{\wedge} (superscript). Eg. $g \backslash _1$ will input g_{1}. Note that not all characters have a subscript or superscript counterpart in Unicode.
Note: to introduce multiple characters involving greek letters, subscripts or superscripts, you need to prepend $\backslash \mathrm{G}$, $_{_}$ or $\backslash \wedge$ respectively before each character.

Some characters which were used in this documentation or which are commonly used in the standard library (sorted by hexadecimal code):

Hex code	Character	Short key-binding	TeX command
00AC	\neg		\backslash neg
00D7	\times	\x	\times
02E2	s	\^s	
03BB	λ	\G1	\backslash lambda
041F	PDF TODO		
0432	PDF TODO		
0435	PDF TODO		
0438	PDF TODO		
043C	PDF TODO		
0440	PDF TODO		
0442	PDF TODO		
1D62	i	_i	
2032		\'1	$\backslash \mathrm{prime}$
207F	n	\^n	
2081	1	_1	
2082	2	_2	
2083	3	_3	
2084	4	_4	
2096	k	_k	
2098	m	_m	
2099	n	_n	

Hex code	Character	Short key-binding	TeX command
2113	l		$\backslash e l l$

Hex code	Character	Short key-binding	TeX command
2115	N	$\backslash \mathrm{bN}$	\Bbb \{ N \}
2191	\uparrow	\u	\uparrow
2192	\rightarrow	\r-	\to
21A6	\mapsto	$\backslash r-\mid$	\backslash mapsto
2200	\forall	\all	\forall
2208	\in		\in
220B	\ni		$\backslash \mathrm{ni}$
220C	\nexists	\nin	
2218	\bigcirc	\o	\circ
2237	::	\: :	
223 C	\sim		
~	\sim		
2248	\approx		
~~	\approx		
2261	三	$\backslash==$	\equiv
2264	\leq	\<=	$\backslash l e$
2284	$\not \subset$	\subn	
228 E	\uplus	\u+	\uplus
2294	\sqcup	\lub	
22A2	\vdash	\1-	\vdash
22A4	T		\top
22A5	\perp		\bot
266D	b	$\backslash \mathrm{b}$	
266F	\#		
#			
27E8	<	\<	
27E9	>	\>	

Hex code	Character	Short key-binding	TeX command
2983	PDF TODO	$\backslash\{\{$	
2984	PDF TODO	$\backslash\}\}$	
2985	PDF TODO	$\backslash(($	
2986	PDF TODO	$\backslash))$	

Hex code	Character	Short key-binding	TeX command
2C7C	j	$_{-}$	

4.4.5 Background highlighting

Agda uses various background colors to indicate specific errors or warnings in your code. Specifically, the following colors are used:

- A yellow background indicates unsolved metavariables (see Metavariables) or unsolved constraints.
- A light salmon (pink-orange) background indicates an issue with termination or productivity checking (see Termination Checking).
- A wheat (light yellow) background indicates an issue with coverage checking (see Coverage Checking).
- A peru (brown) background indicates an issue with positivity checking (see Positivity Checking).
- An orange background indicates a type signature with a missing definition.
- A light coral (darker pink) background indicates a fatal warning
- A grey background indicates unreachable or dead code, and for shadowed variable names in telescopes.
- A white smoke (light grey) background indicates a clauses that does not hold definitionally (see Case trees).
- A pink background indicates an issue with confluence checking of rewrite rules (see Confluence checking).

4.5 Literate Programming

Agda supports a limited form of literate programming, i.e. code interspersed with prose, if the corresponding filename extension is used.

4.5.1 Literate TeX

Files ending in . lagda or . lagda. tex are interpreted as literate TeX files. All code has to appear in code blocks:

```
Ignored by Agda.
\begin{code}[ignored by Agda]
module Whatever where
-- Agda code goes here
\end{code}
```

Text outside of code blocks is ignored, as well as text right after \backslash begin $\{$ code $\}$, on the same line.
Agda finds code blocks by looking for the first instance of \backslash begin $\{$ code $\}$ that is not preceded on the same line by $\%$ or \backslash (not counting \backslash followed by any code point), then (starting on the next line) the first instance of \backslash end $\{$ code \} that is preceded by nothing but spaces or tab characters ($\backslash t$), and so on (always starting on the next line). Note that Agda does not try to figure out if, say, the LaTeX code changes the category code of \%.

If you provide a suitable definition for the code environment, then literate Agda files can double as LaTeX document sources. Example definition:

```
\usepackage {fancyvrb }
\DefineVerbatimEnvironment
    {code} {Verbatim}
    {} % Add fancy options here if you like.
```

The LaTeX backend or the preprocessor lhs 2 TeX can also be used to produce LaTeX code from literate Agda files. See Known pitfalls and issues for how to make LaTeX accept Agda files using the UTF-8 character encoding.

4.5.2 Literate reStructuredText

Files ending in . lagda.rst are interpreted as literate reStructuredText files. Agda will parse code following a line ending in :: , as long as that line does not start with . . :

```
This line is ordinary text, which is ignored by Agda.
::
    module Whatever where
    -- Agda code goes here
Another non-code line.
```

: :

```
.. This line is also ignored
```

reStructuredText source files can be turned into other formats such as HTML or LaTeX using Sphinx.

- Code blocks inside an rST comment block will be type-checked by Agda, but not rendered.
- Code blocks delimited by . . code-block: : agda or . . code-block: : lagda will be rendered, but not type-checked by Agda.
- All lines inside a codeblock must be further indented than the first line of the code block.
- Indentation must be consistent between code blocks. In other words, the file as a whole must be a valid Agda file if all the literate text is replaced by white space.

4.5.3 Literate Markdown

Files ending in . lagda.md are interpreted as literate Markdown files. Code blocks start with `` or ` ` agda on its own line, and end with ` ' ' , also on its own line:

```
This line is ordinary text, which is ignored by Agda.
module Whatever where
-- Agda code goes here
Here is another code block:
    agda
data N : Set where
    zero : N
    suc : N }->\mathbb{N
```

Markdown source files can be turned into many other formats such as HTML or LaTeX using PanDoc.

- Code blocks which should be type-checked by Agda but should not be visible when the Markdown is rendered may be enclosed in HTML comment delimiters ($<!--$ and $-->$).
- Code blocks which should be ignored by Agda, but rendered in the final document may be indented by four spaces.
- Note that inline code fragments are not supported due to the difficulty of interpreting their indentation level with respect to the rest of the file.

4.5.4 Literate Org

Files ending in . lagda. org are interpreted as literate Org files. Code blocks are surrounded by two lines including only `\#+begin_src agda2` and `\#+end_src` (case insensitive).

```
This line is ordinary text, which is ignored by Agda.
#+begin_src agda2
module Whatever where
-- Agda code goes here
```

```
#+end_src
Another non-code line.
```

- Code blocks which should be ignored by Agda, but rendered in the final document may be placed in source blocks without the agda 2 label.

4.6 Generating HTML

To generate highlighted, hyperlinked web pages from source code, run the following command in a shell:

```
$ agda --html --html-dir={output directory} {root module}
```

You can change the way in which the code is highlighted by providing your own CSS file instead of the default, included one (use the --css option).

Note: The Agda.css shipped with Agda is located at $\$\left\{A G D A _D I R\right\} / h t m l / A g d a . c s s$. Since version 2.6.2, the AGDA_DIR is printed by option --print-agda-dir. Thus, you can get hold of the CSS file via cat \$ (agda --print-agda-dir)/html/Agda.css.

You can also highlight all the occurrences of the symbol your mouse is hovering in the HTML by adding the --highlight-occurrences option. The default behaviour only highlight the single symbol your mouse is hovering. Note that this feature may cause browser performance problem, please enable it carefully (not recommended for huge files).

If you're using Literate Agda with Markdown or reStructedText and you want to highlight your Agda codes with Agda's HTML backend and render the rest of the content (let's call it "literate" part for convenience) with some another renderer, you can use the --html-highlight=code option, which makes the Agda compiler:

- not wrapping the literate part into tags
- not wrapping the generated document with a <html> tag, which means you'll have to specify the CSS location somewhere else, like <link rel="stylesheet" type="text/css" href="Agda.css">
- converting tags into <pre class="agda-code"> tags that wrap the complete Agda code block below
- generating files with extension as-is (i.e. .lagda.md becomes .md, .lagda.rst becomes .rst)
- for reStructuredText, a . . raw: html will be inserted before every code blocks

This will affect all the files involved in one compilation, making pure Agda code files rendered without HTML footer/header as well. To use code with literate Agda files and all with pure Agda files, use --html-highlight=auto, which means auto-detection.

4.6.1 Options

--html-dir=directory Changes the directory where the output is placed to directory. Default: html.
--css=URL The CSS file used by the HTML files (URL can be relative).
--html-highlight=[code, all, auto] Highlight Agda code only or everything in the generated HTML files. Default: all.

4.7 Generating LaTeX

An experimental LaTeX backend was added in Agda 2.3.2. It can be used as follows:

```
$ agda --latex {file}.lagda
$ cd latex
$ {latex-compiler} {file}.tex
```

where latex-compiler could be pdflatex, xelatex or lualatex, and file.lagda is a literate Agda couldalsobecalledfile.lagda.tex).ThesourcefileisexpectedtoimporttheLaTeXpackageagdabyincludingthecode\usepackage\{agda\}(possiblywithsomeoptions).UnliketheHTMLbackendonlythetop-mostmoduleisprocessed.Importedmodulescanbeprocessedbyinvokingagda--latexmanuallyoneachofthem.undefined

The LaTeX backend checks if agda. sty is found by the LaTeX environment. If it isn't, a default agda. sty is copied into the LaTeX output directory (by default latex). Note that the appearance of typeset code can be modified by overriding definitions from agda. sty.

Note: The agda. sty shipped with Agda is located at $\$\left\{A G D A _D I R\right\} / l a t e x / a g d a . s t y$. Since version 2.6.2, the AGDA_DIR is printed by option --print-agda-dir. Thus, you can get hold of the CSS file via cat (agda --print-agda-dir)/latex/agda.sty.

4.7.1 Known pitfalls and issues

- Unicode characters may not be typeset properly out of the box. How to address this problem depends on what LaTeX engine is used.
- pdfLaTeX:

The pdfLaTeX program does not by default understand the UTF-8 character encoding. You can tell it to treat the input as UTF-8 by using the inputenc package:

```
\usepackage [utf8]{inputenc}
```

If the inputenc package complains that some Unicode character is "not set up for use with LaTeX", then you can give your own definition. Here is one example:

```
\usepackage{newunicodechar}
\newunicodechar { }\lambda}\mathrm{ {\ensuremath{\mathnormal\lambda} }
\newunicodechar {\leftarrow}{\ensuremath{\mathnormal\from}}
\newunicodechar { }->\mathrm{ } {\ensuremath {\mathnormal\to} }
\newunicodechar { }\forall}{\\mathrm{ \ensuremath {\mathnormal\forall } }
```


- XeLaTeX or LuaLaTeX:

It can sometimes be easier to use LuaLaTeX or XeLaTeX. When these engines are used it might suffice to choose a suitable font, as long as it contains all the right symbols in all the right shapes. If it does not, then Inewunicodechar can be used as above. Here is one example:

```
\usepackage {unicode-math }
\setmathfont{XITS Math}
\usepackage {newunicodechar}
\newunicodechar { }\lambda\mathrm{ } {\ensuremath {\mathnormal\lambda} }
```

- If $<$ and $>$ are typeset like $;$ and $\dot{\dot{ }}$, then the problem might be that you are using pdfLaTeX and have not selected a suitable font encoding.
Possible workaround:

```
\usepackage[T1]{fontenc}
```

- If a regular text font is used, then -- might be typeset as an en dash (-).

Possible workarounds:

- Use a monospace font.
- Turn off ligatures. With pdfLaTeX the following code (which also selects a font encoding, and only turns off ligatures for character sequences starting with -) might work:

```
\usepackage [T1] {fontenc}
\usepackage{microtype}
\DisableLigatures[-] {encoding=T1}
```

With LuaLaTeX or XeLaTeX the following code (which also selects a font) might work:

```
\usepackage{fontspec}
\defaultfontfeatures[\rmfamily] {}
\setmainfont{Latin Modern Roman}
```

Note that you might not want to turn off all kinds of ligatures in the entire document. See the examples below for information on how to set up special font families without TeX ligatures that are only used for Agda code.

- The unicode-math package and older versions of the polytable package are incompatible, which can result in errors in generated LaTeX code.

Possible workaround: Download a more up-to-date version of polytable and put it together with the generated files or install it globally.

4.7.2 Options

The following command-line options change the behaviour of the LaTeX backend:
--latex-dir=\{directory $\}$ Changes the output directory where agda.sty and the output .tex file are placed to directory. Default: latex.
--only-scope-checking Generates highlighting without typechecking the file. See Quicker generation without typechecking.
--count-clusters Count extended grapheme clusters when generating LaTeX code. This option can be given in OPTIONS pragmas. See Counting Extended Grapheme Clusters.

The following options can be given when loading agda. sty by using options]\{agda\}:bwColourschemewhichhighlightsinblackandwhite.conorColourschemesimilartothecoloursusedinEpigram1.referencesEnablesinlinetypesettingofreferencedcode.linksEnableshyperlinksupport.undefined

4.7.3 Quicker generation without typechecking

A faster variant of the backend is available by invoking QuickLaTeX from the Emacs mode, or using agda --latex --only-scope-checking. When this variant of the backend is used the top-level module is not type-checked, only scope-checked. Note that this can affect the generated document. For instance, scope-checking does not resolve overloaded constructors.

If the module has already been type-checked successfully, then this information is reused; in this case QuickLaTeX behaves like the regular LaTeX backend.

4.7.4 Features

Vertical space

Code blocks are by default surrounded by vertical space. Use \backslash AgdaNoSpaceAroundCode $\}$ to avoid this vertical space, and \backslash AgdaSpaceAroundCode \{ \} to reenable it.
Note that, if \backslash AgdaNoSpaceAroundCode $\}$ is used, then empty lines before or after a code block will not necessarily lead to empty lines in the generated document. However, empty lines inside the code block do (by default, with or without \backslash AgdaNoSpaceAroundCode $\}$) lead to empty lines in the output. The height of such empty lines can be controlled by the length \AgdaEmptySkip, which by default is \abovedisplayskip.

Alignment

Tokens preceded by two or more space characters, as in the following example, are aligned in the typeset output:

```
\begin {code}
data N}\mathrm{ : Set where
    zero : N
    suc : \mathbb{N}->\mathbb{N}
_+_
zero + n = n
suc m + n = suc (m + n)
\end{code}
```

In the case of the first token on a line a single space character sometimes suffices to get alignment. A constraint on the indentation of the first token t on a line is determined as follows:

- Let T be the set containing every previous token (in any code block) that is either the initial token on its line or preceded by at least one whitespace character.
- Let S be the set containing all tokens in T that are not shadowed by other tokens in T. A token t_{l} is shadowed by t_{2} if t_{2} is further down than t_{1} and does not start to the right of t_{1}.
- Let L be the set containing all tokens in S that start to the left of t, and E be the set containing all tokens in S that start in the same column as t.
- The constraint is that t must be indented further than every token in L, and aligned with every token in E.

Note that if any token in L or E belongs to a previous code block, then the constraint may not be satisfied unless (say) the AgdaAlign environment is used in an appropriate way. If custom settings are used, for instance if \backslash Agda Indent is redefined, then the constraint discussed above may not be satisfied.

Examples:

[^3]```
postulate
 A B
 C : Set
```

- Here C is not (necessarily) indented further than B, because X shadows B :

```
postulate
 A B : Set
 X
 C : Set
```

These rules are inspired by, but not identical to, the one used by lhs2TeX's poly mode (see Section 8.4 of the manual for lhs2TeX version 1.17).

## Counting Extended Grapheme Clusters

The alignment feature regards the string $+_{-}$, containing + and a combining character, as having length two. However, it seems more reasonable to treat it as having length one, as it occupies a single column, if displayed "properly" using a monospace font. The flag --count-clusters is an attempt at fixing this. When this flag is enabled the backend counts "extended grapheme clusters" rather than code points.

Note that this fix is not perfect: a single extended grapheme cluster might be displayed in different ways by different programs, and might, in some cases, occupy more than one column. Here are some examples of extended grapheme clusters, all of which are treated as a single character by the alignment algorithm:

```
|
+_-|
PDF TODOPDF TODO
PDF TODOPDF TODOPDF TODO| keywords:
```

```
record +_ : Set }\mp@subsup{\mp@code{l}}{\mathrm{ where field A : Set}}{
```

record +_ : Set }\mp@subsup{\mp@code{l}}{\mathrm{ where field A : Set}}{
field B : Set

```
field B : Set
```

PDF TODOPDF TO

Note also that the layout machinery does not count extended grapheme clusters, but code points. The following code is syntactically correct, but if -- count-clusters is used, then the LaTeX backend does not align the two field

The --count-clusters flag is not enabled in all builds of Agda, because the implementation depends on the ICU library, the installation of which could cause extra trouble for some users. The presence of this flag is controlled by the Cabal flag enable-cluster-counting.

## Breaking up code blocks

Sometimes one might want to break up a code block into multiple pieces, but keep code in different blocks aligned with respect to each other. Then one can use the AgdaAlign environment. Example usage:

```
\begin{AgdaAlign}
\begin{code}
 code
 code (more code)
\end{code}
```

```
Explanation...
\begin{code}
 aligned with "code"
 code (aligned with (more code))
\end{code}
\end{AgdaAlign}
```

Note that AgdaAlign environments should not be nested.
Sometimes one might also want to hide code in the middle of a code block. This can be accomplished in the following way:

```
\begin{AgdaAlign}
\begin {code}
 visible
\end{code}
\begin{code} [hide]
 hidden
\end{code}
\begin{code}
 visible
\end{code}
\end{AgdaAlign}
```

However, the result may be ugly: extra space is perhaps inserted around the code blocks. The AgdaSuppressSpace environment ensures that extra space is only inserted before the first code block, and after the last one (but not if $\backslash$ AgdaNoSpaceAroundCode $\}$ is used). Example usage:

```
\begin{AgdaAlign}
\begin{code}
 code
 more code
\end{code}
Explanation...
\begin{AgdaSuppressSpace}
\begin {code}
 aligned with "code"
 aligned with "more code"
\end{code}
\begin { code} [hide]
 hidden code
\end{code}
\begin{code }
 also aligned with "more code"
\end{code}
\end{AgdaSuppressSpace}
\end{AgdaAlign}
```

Note that AgdaSuppressSpace environments should not be nested. There is also a combined environment, AgdaMultiCode, that combines the effects of AgdaAlign and AgdaSuppressSpace.

## Hiding code

Code that you do not want to show up in the output can be hidden by giving the argument hide to the code block:

```
\begin{code} [hide]
-- the code here will not be part of the final document
\end{code}
```


## Hyperlinks (experimental)

If the hyperref latex package is loaded before the agda package and the links option is passed to the agda package, then the agda package provides a function called $\backslash$ AgdaTarget. Identifiers which have been declared targets, by the user, will become clickable hyperlinks in the rest of the document. Here is a small example:

```
\documentclass{article}
\usepackage{hyperref}
\usepackage[links] {agda}
\begin{document }
\AgdaTarget {\mathbb{N}}
\AgdaTarget {zero}
\begin {code}
data }\mathbb{N}\mathrm{ : Set where
 zero : N
 suc : N}->\mathbb{N
\end{code}
See next page for how to define \AgdaFunction{two} (doesn't turn into a
link because the target hasn't been defined yet). We could do it
manually though; \hyperlink{two}{\AgdaDatatype{two}}.
\newpage
\AgdaTarget {two}
\hypertarget {two } {}
\begin{ code }
two : \mathbb{N}
two = suc (suc zero)
\end { code}
\AgdaInductiveConstructor{zero} is of type
\AgdaDatatype{\mathbb{N}}.\AgdaInductiveConstructor{suc} has not been defined to
be a target so it doesn't turn into a link.
\newpage
Now that the target for \AgdaFunction{two} has been defined the link
works automatically.
\begin {code }
data Bool : Set where
 true false : Bool
\end{code}
The AgdaTarget command takes a list as input, enabling several targets
to be specified as follows:
\AgdaTarget{if, then, else, if_then_else_}
\begin {code}
if_then_else_: {A : Set } }->\mathrm{ Bool }->\textrm{A}->\textrm{A}->\textrm{A
```

(continues on next page)

```
if true then t else f = t
if false then t else f = f
\end{code}
\newpage
Mixfix identifier need their underscores escaped:
\AgdaFunction{if_then_else_}.
\end {document }
```

The borders around the links can be suppressed using hyperref's hidelinks option:

```
\usepackage[hidelinks] {hyperref}
```

Warning: The current approach to links does not keep track of scoping or types, and hence overloaded names might create links which point to the wrong place. Therefore it is recommended to not overload names when using the links option at the moment. This might get fixed in the future.

## Numbered code listings

When the option number is used an equation number is generated for the code listing. The number is set to the right, centered vertically. By default the number is set in parentheses, but this can be changed by redefining $\backslash$ AgdaFormatCodeNumber.

The option can optionally be given an argument: when number $=1$ is used a label 1 , referring to the code listing, is generated. It is possible to use this option several times with different labels.

An example:

```
\begin { code} [number=code: lemma]
 a proof
\end{code}
%
A consequence of Lemma~\ref{code:lemma} is that...
```

The option number has no effect if used together with hide, inline or inline*.

## Inline code

Code can be typeset inline by giving the argument inline to the code block:

```
Assume that we are given a type
%
\begin{code}[hide]
 module _ (
\end{code}
\begin{code}[inline]
 A : Set
\end{code }
\begin {code}[hide]
) where
```

```
\end{code}
\circ
```

There is also a variant of inline, inline*. If inline* is used, then space ( $\backslash$ AgdaSpace $\}$ ) is added at the end of the code, and when inline is used space is not added.

The implementation of these options is a bit of a hack. Only use these options for typesetting a single line of code without multiple consecutive whitespace characters (except at the beginning of the line).

## Another way to typeset inline code

An alternative to using inline and inline* is to typeset code manually. Here is an example:

```
Below we postulate the existence of a type called
\AgdaPostulate{apa}:
%
\begin { code }
 postulate apa : Set
\end{code}
```

You can find all the commands used by the backend (and which you can use manually) in the agda. sty file.

## Semi-automatically typesetting inline code (experimental)

Since Agda version 2.4.2 there is experimental support for semi-automatically typesetting code inside text, using the references option. After loading the agda package with this option, inline Agda snippets will be typeset in the same way as code blocks-after post-processing-if referenced using the $\backslash$ AgdaRef command. Only the current module is used; should you need to reference identifiers in other modules, then you need to specify which other module manually by using $\backslash$ AgdaRef [module] \{identifier\}.
In order for the snippets to be typeset correctly, they need to be post-processed by the postprocess-latex.pl script from the Agda data directory. You can copy it into the current directory by issuing the command

```
$ cp $(agda --print-agda-dir)/latex/postprocess-latex.pl .
```

In order to generate a PDF, you can then do the following:

```
$ agda --latex {file}.lagda
$ cd latex/
$ perl ../postprocess-latex.pl {file}.tex > {file}.processed
$ mv {file}.processed {file}.tex
$ xelatex {file}.tex
```

Here is a full example, consisting of a Literate Agda file Example. lagda and a makefile Makefile.
Listing 1: Example.lagda

```
\documentclass{article}
\usepackage [references] {agda}
\begin{document }
Here we postulate \AgdaRef{apa}.
```

(continued from previous page)

```
\circ
\begin{code}
 postulate apa : Set
\end{code}
\end{document }
```

Listing 2: Makefile

```
AGDA=agda
AFLAGS=-i. --latex
SOURCE=Example
POSTPROCESS=postprocess-latex.pl
LATEX=latexmk -pdf -use-make -xelatex
all:
 $(AGDA) $(AFLAGS) $(SOURCE).lagda
 cd latex/ && \
 perl ../$(POSTPROCESS) $(SOURCE).tex > $(SOURCE).processed && \
 mv $(SOURCE).processed $(SOURCE).tex && \
 $(LATEX) $(SOURCE).tex && \
 mv $(SOURCE).pdf ..
```

See Issue \#1054 on the bug tracker for implementation details.

Warning: Overloading identifiers should be avoided. If multiple identifiers with the same name exist, then AgdaRef will typeset according to the first one it finds.

## Controlling the typesetting of individual tokens

The typesetting of (certain) individual tokens can be controlled by redefining the $\backslash$ AgdaF ormat command. Example:

```
\usepackage{ifthen}
% Insert extra space before some tokens.
\DeclareRobustCommand {\AgdaFormat } [2] {%
 \ifthenelse{
 \equal {#1}{\equiv<} \OR
 \equal {#1} {\equiv\langle\rangle} \OR
 \equal {#1}
 }{\ }{}#2}
```

Note the use of \DeclareRobustCommand. The first argument to $\backslash$ AgdaFormat is the token, and the second argument the thing to be typeset.

## Emulating \%format rules

The LaTeX backend has no feature directly comparable to lhs 2 TeX's \%format rules. However, one can hack up something similar by using a program like sed. For instance, let us say that replace. sed contains the following text:

```
Turn \Sigma[x \in X] into (x : X) x.
s/\\AgdaRecord{\Sigma\[} \(.*\) \\AgdaRecord{\in} \(.*\) \\AgdaRecord{]}/\\\AgdaSymbol\{(\}\1)\
\hookrightarrow\\AgdaSymbol\{:\} \2\\AgdaSymbol\{)\} \\AgdaFunction\{x\}/g
```

The output of the LaTeX backend can then be postprocessed in the following way:

```
$ sed -f replace.sed {file}.tex > {file}.sedded
$ mv {file}.sedded {file}.tex
```


## Including Agda code in a larger LaTeX document

Sometimes you might want to include a bit of code without making the whole document a literate Agda file. There are two ways in which this can be accomplished.
(The following technique was probably invented by Anton Setzer.) Put the code in a separate file, and use \newcommand to give a name to each piece of code that should be typeset:

## Listing 3: Code.lagda.tex

```
\newcommand {\nat } {%
\begin {code }
data N : Set where
 zero : N
 suc : (n : N) }->\mathbb{N
\end{code } }
```

Preprocess this file using Agda, and then include it in another file in the following way:
Listing 4: Main.tex

```
% In the preamble:
\usepackage {agda}
% Further setup related to Agda code.
% The Agda code can be included either in the preamble or in the
% document's body.
\input {Code}
% Then one can refer to the Agda code in the body of the text:
The natural numbers can be defined in the following way in Agda:
\nat { }
```

Here it is assumed that agda. sty is available in the current directory (or on the TeX search path).
Note that this technique can also be used to present code in a different order, if the rules imposed by Agda are not compatible with the order that you would prefer.

There is another technique that uses the catchfilebetweentags latex package. Assuming you have some code in Code. lagda and want to include it in Paper. tex, you first add tags to your code as follows:

Listing 5: Code.lagda

```
%<*nat>
\begin{code}
data }\mathbb{N}\mathrm{ : Set where
 zero : N
```

```
 suc :(n : N) }->\mathbb{N
\end{code}
%</nat>
%<*plus>
\begin{code}
+}:\mathbb{N}->\mathbb{N}->\mathbb{N
zero +n=n
sucm m n = suc (m + n)
\end{code}
%</plus>
```

You can then use $\backslash$ ExecuteMetaData, as provided by catchfilebetweentags, to include the code. Note that the code does not have to be in the same order (or from the same files). This method is particularly convenient when you want to write a paper or presentation about a library of code.

## Listing 6: Paper.tex

```
% Other setup related to Agda...
\usepackage{catchfilebetweentags }
\begin {document }
 \begin{itemize}
 \item The natural numbers
 \end{itemize}
 \ExecuteMetaData[latex/Code.tex]{nat}
 \begin{itemize}
 \item Addition (\AgdaFunction{_+__})
 \end{itemize}
 \ExecuteMetaData[latex/Code.tex]{plus}
```


### 4.7.5 Examples

Some examples that can be used for inspiration (in the HTML version of the manual you see links to the source code and in the PDF version of the manual you see inline source code).

- For the article class and pdfLaTeX:

```
\documentclass{article}
% Use the input encoding UTF-8 and the font encoding T1.
\usepackage[utf8]{inputenc}
\usepackage[T1] {fontenc}
% Support for Agda code.
\usepackage{agda}
% Customised setup for certain characters.
\usepackage{newunicodechar}
\newunicodechar{\forall} {\ensuremath{\mathnormal {\forall } } }
\newunicodechar { }->}{\\mathrm{ \ensuremath {\mathnormal {\to} }}
```

```
\newunicodechar{1}{\ensuremath{{}_1}}
% Support for Greek letters.
\usepackage{alphabeta}
% Disable ligatures that start with '-'. Note that this affects the
% entire document!
\usepackage {microtype}
\DisableLigatures[-] {encoding=T1}
\begin{document}
Some code:
\begin{code}
{-# OPTIONS --without-K --count-clusters #-}
open import Agda.Builtin.String
-- A comment with some TeX ligatures:
-- --, ---, ?`, !`, `, ``, ', '', <<, >>.
\Theta1 : Set }->\mathrm{ Set
\Theta1 = \ A }->\textrm{A
a-name-with--hyphens : }\forall\mathrm{ {A : Set} }->\mathrm{ A }->\mathrm{ A
a-name-with--hyphens ff--fl = ff--fl
ffi : String
ffi = "--"
\end{code}
Note that the code is indented.
\end{document}
```

- For the article class and LuaLaTeX or XeLaTeX:
- If you want to use the default fonts (with—at the time of writing-bad coverage of non-ASCII characters):

```
\documentclass{article}
% Support for Agda code.
\usepackage {agda}
% Use special font families without TeX ligatures for Agda code. (This
% code is inspired by a comment by Enrico Gregorio/egreg:
%https://tex.stackexchange.com/a/103078.)
\usepackage{fontspec}
\newfontfamily{\AgdaSerifFont} {Latin Modern Roman}
\newfontfamily{\AgdaSansSerifFont}{Latin Modern Sans}
\newfontfamily{\AgdaTypewriterFont}{Latin Modern Mono}
\renewcommand {\AgdaFontStyle } [1] { {\AgdaSansSerifFont {}#1}}
\renewcommand{\AgdaKeywordFontStyle} [1]{{\AgdaSansSerifFont {}#1}}
\renewcommand{\AgdaStringFontStyle} [1] {{\AgdaTypewriterFont {}#1}}
\renewcommand {\AgdaCommentFontStyle} [1] {{\AgdaTypewriterFont {}#1}}
\renewcommand {\AgdaBoundFontStyle} [1]{\textit {\AgdaSerifFont {}#1}}
% Workarounds for the fact that the Latin Modern Sans font does not
```

(continues on next page)
(continued from previous page)

```
% support certain characters. An alternative would be to use another
% font.
\usepackage {newunicodechar}
\newunicodechar { }\lambda}{\ensuremath {\mathnormal {\lambda } }
\newunicodechar{}\forall}{\ensuremath {\mathnormal {\forall}}
\newunicodechar{_} {\ensuremath{ {}_1} }
\begin{document }
Some code:
\begin {code}
{-# OPTIONS --without-K --count-clusters #-}
open import Agda.Builtin.String
-- A comment with some TeX ligatures:
-- --, ---, ?`, !`, `, ``, ', '', <<, >>.
\Theta
\Theta
a-name-with--hyphens : }\forall\mathrm{ {A : Set} }->\textrm{A}->\textrm{A
a-name-with--hyphens ff--fl = ff--fl
ffi : String
ffi = "--"
\end{code}
Note that the code is indented.
\end{document }
```

- If you would prefer to use other fonts (with possibly better coverage):

```
\documentclass{article}
% Support for Agda code.
\usepackage { agda }
% Use fonts with a decent coverage of non-ASCII characters.
\usepackage {fontspec}
\setmainfont{DejaVu Serif}
\setsansfont{DejaVu Sans}
\setmonofont {DejaVu Sans Mono}
% Use special font families without TeX ligatures for Agda code. (This
% code is inspired by a comment by Enrico Gregorio/egreg:
% https://tex.stackexchange.com/a/l03078.)
\newfontfamily{\AgdaSerifFont}{DejaVu Serif}
\newfontfamily{\AgdaSansSerifFont}{DejaVu Sans}
\newfontfamily{\AgdaTypewriterFont}{DejaVu Sans Mono}
\renewcommand{\AgdaFontStyle} [1] {{\AgdaSansSerifFont { } # 1 } }
\renewcommand {\AgdaKeywordFontStyle} [1]{{\AgdaSansSerifFont {}#1}}
\renewcommand{\AgdaStringFontStyle} [1]{{\AgdaTypewriterFont {}#1}}
\renewcommand {\AgdaCommentFontStyle} [1] {{\AgdaTypewriterFont {}#1}}
\renewcommand{\AgdaBoundFontStyle}[1]{\textit{\AgdaSerifFont {} #1}}
\begin{document }
```

```
Some code:
\begin {code}
{-# OPTIONS --without-K --count-clusters #-}
open import Agda.Builtin.String
-- A comment with some TeX ligatures:
-- --, ---, ?`, !`, `, ``, ', '', <<, >>.
\Theta1 : Set }->\mathrm{ Set
\Theta
a-name-with--hyphens : }\forall{A:Set} -> A > A
a-name-with--hyphens ff--fl = ff--fl
ffi : String
ffi = "--"
\end{code}
Note that the code is indented.
\end{document }
```

- For the beamer class and pdfLaTeX:

```
\documentclass {beamer}
% Use the input encoding UTF-8 and the font encoding TI.
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
% Support for Agda code.
\usepackage{agda}
% Decrease the indentation of code.
\setlength {\mathindent } {1em}
% Customised setup for certain characters.
\usepackage{newunicodechar}
\newunicodechar {\forall} {\ensuremath {\mathnormal {\forall } }}
\newunicodechar { }->}{\\mathrm{ \ensuremath {\mathnormal {\to}}}
\newunicodechar {1} {\ensuremath{{ }_1} }
% Support for Greek letters.
\usepackage{alphabeta}
% Disable ligatures that start with '-'. Note that this affects the
% entire document!
\usepackage {microtype}
\DisableLigatures [-] {encoding=T1}
\begin {document }
\begin{frame}
 Some code:
 \begin {code}
 {-# OPTIONS --without-K --count-clusters #-}
```

(continues on next page)

```
open import Agda.Builtin.String
 -- A comment with some TeX ligatures:
 -- --, ---, ?`, !`, `, ``, ', '', <<, >>.
 \Theta : Set }->\mathrm{ Set
 \Theta
 a-name-with--hyphens : }\forall{A:Set} -> A -> A
 a-name-with--hyphens ff--fl = ff--fl
 ffi : String
 ffi = "--"
 \end{code}
 Note that the code is indented.
\end{frame}
\end {document }
```

- For the beamer class and LuaLaTeX or XeLaTeX:

```
\documentclass {beamer}
% Support for Agda code.
\usepackage{agda}
% Decrease the indentation of code.
\setlength{\mathindent } {1em}
% Use special font families without TeX ligatures for Agda code. (This
% code is inspired by a comment by Enrico Gregorio/egreg:
%https://tex.stackexchange.com/a/103078.)
\usepackage {fontspec}
\newfontfamily{\AgdaSerifFont} {Latin Modern Roman}
\newfontfamily{\AgdaSansSerifFont}{Latin Modern Sans}
\newfontfamily{\AgdaTypewriterFont}{Latin Modern Mono}
\renewcommand {\AgdaFontStyle} [1] { {\AgdaSansSerifFont { } #1} }
\renewcommand {\AgdaKeywordFontStyle} [1] {{\AgdaSansSerifFont {}#1}}
\renewcommand {\AgdaStringFontStyle} [1] { {\AgdaTypewriterFont {}#1}}
\renewcommand{\AgdaCommentFontStyle} [1] {{\AgdaTypewriterFont {}#1}}
\renewcommand {\AgdaBoundFontStyle} [1] {\textit{\AgdaSansSerifFont { } # 1 } }
% Workarounds for the fact that the Latin Modern Sans font does not
% support certain characters.
\usepackage{newunicodechar}
\newunicodechar { \lambda} {\ensuremath {\mathnormal {\lambda} } }
\newunicodechar { }\forall\mathrm{ } \\ensuremath{\mathnormal {\forall } }}
\newunicodechar {1} {\ensuremath {{}_1}}
\begin{document }
\begin{frame}
 Some code:
 \begin{code}
 {-# OPTIONS --without-K --count-clusters #-}
```

(continues on next page)

```
 open import Agda.Builtin.String
 -- A comment with some TeX ligatures:
 -- --, ---, ?`, !`, `, ``, ', '', <<, >>.
 \Theta1 : Set }->\mathrm{ Set
 \Theta
 a-name-with--hyphens : }\forall{A:Set} -> A -> A
 a-name-with--hyphens ff--fl = ff--fl
 ffi : String
 ffi = "--"
 \end {code }
 Note that the code is indented.
\end{frame}
\end{document }
```

- For the acmart class and pdfLaTeX:

```
\documentclass[acmsmall]{acmart }
% Use the UTF-8 encoding.
\usepackage[utf8]{inputenc}
% Support for Agda code.
\usepackage {agda}
% Code should be indented.
\setlength{\mathindent}{1em}
% Customised setup for certain characters.
\usepackage{newunicodechar}
\newunicodechar{\forall} {\ensuremath{\mathnormal {\forall}}}
\newunicodechar{1}{\ensuremath {{}_{\textsf{1}}}}
% Support for Greek letters.
\usepackage{alphabeta}
O Disable ligatures that start with '_'. Note that this affects the
% entire document! Note also that if all you want to do is to ensure
% that the comment starter '--' is typeset with two characters, then
% you do not need this command, because '--' is not typeset as an en
% dash (-) when the typewriter font is used.
\DisableLigatures[-] {encoding=T1}
\begin{document}
\acmConference{Some conference}
\maketile
Some code:
\begin{code}
{-# OPTIONS --without-K --count-clusters #-}
open import Agda.Builtin.String
```

```
-- A comment with some TeX ligatures:
-- --, ---, ?`, !`, `, ``, ', '', <<, >>.
\Theta1 : Set }->\mathrm{ Set
\Theta1 = 㧨 A A
a-name-with--hyphens : }\forall\mathrm{ {A : Set} }->\textrm{A}->\textrm{A
a-name-with--hyphens ff--fl = ff--fl
ffi : String
ffi = "--"
\end{code}
Note that the code is indented.
\end {document }
```

- For the acmart class and XeLaTeX:

```
\documentclass[acmsmall]{acmart}
% Support for Agda code.
\usepackage{agda}
% Code should be indented.
\setlength{\mathindent} {1em}
% Use special font families without TeX ligatures for Agda code. (This
% code is inspired by a comment by Enrico Gregorio/egreg:
%https://tex.stackexchange.com/a/103078.)
\usepackage{fontspec}
\newfontfamily{\AgdaSerifFont}{Linux Libertine O}
\newfontfamily{\AgdaSansSerifFont}{Linux Biolinum O}
\newfontfamily{\AgdaTypewriterFont} {inconsolata}
\renewcommand {\AgdaFontStyle } [1] { {\AgdaSansSerifFont { } # 1 } }
\renewcommand {\AgdaKeywordFontStyle}[1] {{\AgdaSansSerifFont {}#1}}
\renewcommand {\AgdaStringFontStyle} [1]{{\AgdaTypewriterFont {}#1}}
\renewcommand{\AgdaCommentFontStyle}[1] {{\AgdaTypewriterFont {}#1}}
\renewcommand {\AgdaBoundFontStyle} [1] {\textit {\AgdaSerifFont {}#1} }
\begin{document }
\acmConference{Some conference}
\maketile
Some code:
\begin{code}
{-# OPTIONS --without-K --count-clusters #-}
open import Agda.Builtin.String
-- A comment with some TeX ligatures:
-- --, ---, ?`, !`, `, ``, ', '', <<, >>.
\Theta
\Theta1 = 㧨 A A
a-name-with--hyphens : }\forall\mathrm{ {A : Set} }->\textrm{A}->\textrm{A
a-name-with--hyphens ff--fl=ff--fl
```

(continues on next page)

```
ffi : String
ffi = "--"
\end{code}
Note that the code is indented.
\end{document}
```

Note that these examples might not satisfy all your requirements, and might not work in all settings (in particular, for LuaLaTeX or XeLaTeX it might be necessary to install one or more fonts). If you have to follow a particular house style, then you may want to make sure that the Agda code follows this style, and that you do not inadvertently change the style of other text when customising the style of the Agda code.

### 4.8 Interface files

Note: This is a stub. Contributions, additions and corrections are greatly appreciated.

When an . agda file is saved, another file with the same name and extension . agdai is automatically created. The latter file is what we call an interface file.
Interface files store the results from the type-checking process. These results include:

- A translation of pattern-matching definitions to case trees (this translation speeds up computation).
- The resolution of all implicit arguments. (Note: under the flag--allow-unsolved-metas not all implicit arguments need to be resolved to create an interface file.)


### 4.8.1 Storage

In projects that do not use any Agda library, the . agdai files are stored alongside the . agda source file.
If the . agda source file is part of a project with an identifiable root (i.e. if there is an . agda-lib file in any of the directories above it), then the interface file is stored in the _build/VERSION directory at the identified root. This prevents losing the interface file when switching between agda versions. You can revert this behaviour with the flag --no-project.

Note: When an . agda file is renamed, the old . agdai file is kept, and a new . agdai file is created. This is the intended behavior, and the orphan files can be safely deleted from the user's file system if needed.

The compression run to create . agdai files introduces sharing. Sharing improves the memory efficiency of the code loaded from interface files.

The syntax represented in . agdai files differs significantly from the syntax of source files.

### 4.8.2 Compilation

An external module is loaded by loading its interface file. Interface files are also intermediate points when compiling through a backend to e.g. Haskell.

### 4.9 Library Management

Agda has a simple package management system to support working with multiple libraries in different locations. The central concept is that of a library.

### 4.9.1 Example: Using the standard library

Before we go into details, here is some quick information for the impatient on how to tell Agda about the location of the standard library, using the library management system.

Let's assume you have downloaded the standard library into a directory which we will refer to by AGDA_STDLIB (as an absolute path). A library file standard-library.agda-lib should exist in this directory, with the following content:

```
name: standard-library
```

include: src

To use the standard library by default in your Agda projects, you have to do two things:

1. Create a file AGDA_DIR/libraries with the following content:
```
AGDA_STDLIB/standard-library.agda-lib
```

(Of course, replace AGDA_STDLIB by the actual path.)
The AGDA_DIR defaults to $\sim /$. agda on unix-like systems and $C$ : \Users \USERNAME $\backslash$ AppData $\backslash$ Roaming $\backslash$ agda or similar on Windows. (More on AGDA_DIR below.)

Remark: The libraries file informs Agda about the libraries you want it to know about.
2. Create a file AGDA_DIR/defaults with the following content:

```
standard-library
```

Remark: The defaults file informs Agda which of the libraries pointed to by libraries should be used by default (i.e. in the default include path).

That's the short version, if you want to know more, read on!

### 4.9.2 Library files

A library consists of

- a name
- a set of dependencies
- a set of include paths
- a set of default flags

Libraries are defined in . agda-lib files with the following syntax:

```
name: LIBRARY-NAME -- Comment
depend: LIB1 LIB2
 LIB3
 LIB4
include: PATH1
 PATH2
 PATH3
flags: OPTION1 OPTION2
 OPTION3
```

Dependencies are library names, not paths to . agda-lib files, and include paths are relative to the location of the library-file.

Default flags can be any valid pragma options (see Command-line and pragma options).
Each of the four fields is optional. Naturally, unnamed libraries cannot be depended upon. But dropping the name is possible if the library file only serves to list include paths and/or dependencies of the current project.

### 4.9.3 Installing libraries

To be found by Agda a library file has to be listed (with its full path) in a libraries file

- AGDA_DIR/libraries-VERSION, or if that doesn't exist
- AGDA_DIR/libraries
where VERSION is the Agda version (for instance 2.5.1). The AGDA_DIR defaults to ~/ agda on unix-like
 by setting the AGDA_DIR environment variable.

Each line of the libraries file shall be the absolute file system path to the root of a library.
Environment variables in the paths (of the form $\$ V A R$ or $\$\{V A R\}$ ) are expanded. The location of the libraries file used can be overridden using the --library-file=FILE command line option.

You can find out the precise location of the libraries file by calling agda -1 fjdsk Dummy.agda at the command line and looking at the error message (assuming you don’t have a library called $f j d s k$ installed).

Note that if you want to install a library so that it is used by default, it must also be listed in the defaults file (details below).

### 4.9.4 Using a library

There are three ways a library gets used:

- You supply the --library=LIB (or -1 LIB) option to Agda. This is equivalent to adding a -iPATH for each of the include paths of LIB and its (transitive) dependencies. In this case the current directory is not implicitly added to the include paths.
- No explicit --library flag is given, and the current project root (of the Agda file that is being loaded) or one of its parent directories contains an .agda-lib file defining a library LIB. This library is used as if a --library=LIB option had been given, except that it is not necessary for the library to be listed in the AGDA_DIR/libraries file.
- No explicit --library flag, and no . agda-lib file in the project root. In this case the file AGDA_DIR/ defaults is read and all libraries listed are added to the path. The defaults file should contain a list of library names, each on a separate line. In this case the current directory is also added to the path.

To disable default libraries, you can give the flag --no-default-libraries. To disable using libraries altogether, use the --no-libraries flag.

### 4.9.5 Default libraries

If you want to usually use a variety of libraries, it is simplest to list them all in the AGDA_DIR/defaults file.
Each line of the defaults file shall be the name of a library resolvable using the paths listed in the libraries file. For example,

```
standard-library
```

library2
library3
where of course library2 and library3 are the libraries you commonly use. While it is safe to list all your libraries in library, be aware that listing libraries with name clashes in defaults can lead to difficulties, and should be done with care (i.e. avoid it unless you really must).

### 4.9.6 Version numbers

Library names can end with a version number (for instance, mylib-1.2.3). When resolving a library name (given in a --library flag, or listed as a default library or library dependency) the following rules are followed:

- If you don't give a version number, any version will do.
- If you give a version number an exact match is required.
- When there are multiple matches an exact match is preferred, and otherwise the latest matching version is chosen.

For example, suppose you have the following libraries installed: mylib, mylib-1.0, otherlib-2.1, and otherlib-2.3. In this case, aside from the exact matches you can also say --library=otherlib to get otherlib-2.3.

### 4.9.7 Upgrading

If you are upgrading from a pre 2.5 version of Agda, be aware that you may have remnants of the previous library management system in your preferences. In particular, if you get warnings about agda2-include-dirs, you will need to find where this is defined. This may be buried deep in .el files, whose location is both operating system and emacs version dependant.

### 4.10 Performance debugging

Sometimes your Agda program doesn't type check or run as fast as you expected. This section describes some tools available to figure out why not.

Note: This is a stub

### 4.10.1 Measuring typechecking performance

Agda can do some internal book-keeping of how time is spent, which can be turned on using the profile verbosity:

```
-vprofile.definitions:10
```

Break down by time spent checking each top-level definition.
-vprofile.modules:10
Break down by time spent checking each top-level module.
-vprofile:7
Break down by activity (such as parsing, type checking, termination checking, etc).
The Haskell runtime system can also tell you something about how Agda spends its time:

```
+RTS -s -RTS
```

Show memory usage and time spent on garbage collection.

## External tools

- agda-bench is a tool for benchmarking compile-time evaluation and type checking performance of Agda programs.


### 4.10.2 Measuring run-time performance

Agda programs are compiled (by default) via Haskell (see Compilers), so the GHC profiling tools can be applied to Agda programs. For instance,

```
> agda -c Test.agda --ghc-flag=-prof --ghc-flag=-fprof-auto
> ./Test +RTS -p
```

A complication is that the GHC backend generates names like $\alpha 76$, so making sense of the profiling output can require a little bit of work.

## External tools

- agda-criterion has bindings for a small part of the criterion Haskell library for performance measurement.
- agda-ghc-names can translate the names in generated Haskell code back to Agda names.


### 4.11 Search Definitions in Scope

Since version 2.5.1 Agda supports the command Search About that searches the objects in scope, looking for definitions matching a set of constraints given by the user.

### 4.11.1 Usage

The tool is invoked by choosing Search About in the goal menu or pressing $C-c C-z$. It opens a prompt and users can then input a list of space-separated identifiers and string literals. The search returns the definitions in scope whose type contains all of the mentioned identifiers and whose name contains all of the string literals as substrings.

For instance, in the following module:

```
open import Agda.Builtin.Char
open import Agda.Builtin.Char.Properties
open import Agda.Builtin.String
open import Agda.Builtin.String.Properties
```

running Search About on Char String returns:

## Definitions about Char, String

primShowChar : Char $\rightarrow$ String
primStringFromList : Agda.Builtin.List.List Char $\rightarrow$ String
primStringToList : String $\rightarrow$ Agda.Builtin.List.List Char
primStringToListInjective
$:(\mathbf{a b}[S t r i n g) \rightarrow$ primStringToList a Agda.Builtin.Equality. $\equiv$ primStringToList $\mathrm{b} \rightarrow \mathrm{a}$ Agda.Builtin.Equality. $\equiv \mathrm{b}$
and running Search About on String "Injective" returns:
Definitions about String, "Injective"
primStringToListInjective
$:(\mathbf{a b}[S t r i n g) \rightarrow]$ primStringToList a Agda.Builtin.Equality. $\equiv$ primStringToList $\mathrm{b} \rightarrow \mathrm{a}$ Agda.Builtin.Equality. $\equiv \mathrm{b}$

## chapter 5

## Contribute

Agda and its related libraries are hosted at Github. To contribute, you will need to fork a repository, make the changes and then send a pull request (PR).

A code of conduct and other considerations are described in the HACKING.md file in the root of the Agda repository. You can also take a look at the current Agda issues to help us solve them. You can start with the label difficulty: easy and help wanted. You can also explore all the labels.

Note: The Agda User Manual is a work-in-progress and is still incomplete. Contributions, additions, and corrections to the Agda manual are greatly appreciated.

### 5.1 Documentation

Documentation is written in reStructuredText format.
The Agda documentation is shipped together with the main Agda repository in the doc/user-manual subdirectory. The content of this directory is automatically published to https://agda.readthedocs.io.

### 5.1.1 Rendering documentation locally

- To build the user manual locally, you need to install the following dependencies:
- Python $\geq 3.3$
- Sphinx and sphinx-rtd-theme
pip install --user -r doc/user-manual/requirements.txt

Note that the --user option puts the Sphinx binaries in \$HOME/.local/bin.

- ImageMagick with SVG and PNG support; check output of

```
convert -list format
```

_ LaTeX

- PyDvi

To see the list of available targets, execute make help in doc/user-manual. E.g., call make html to build the documentation in html format.

### 5.1.2 Type-checking code examples

You can include code examples in your documentation.
If your give the documentation file the extension . lagda.rst, Agda will recognise it as an Agda file and type-check it.

Tip: If you edit . lagda.rst documentation files in Emacs, you can use Agda's interactive mode to write your code examples. Run $M-x$ agda 2 -mode to switch to Agda mode, and $M-x$ rst-mode to switch back to rST mode.

You can check that all the examples in the manual are type-correct by running make user-manual-test from the root directory. This check will be run as part of the continuous integration build.

Warning: Remember to run fix-agda-whitespace to remove trailing whitespace before submitting the documentation to the repository.

### 5.1.3 Syntax for code examples

The syntax for embedding code examples depends on:

1. Whether the code example should be visible to the reader of the documentation.
2. Whether the code example contains valid Agda code (which should be type-checked).

## Visible, checked code examples

This is code that the user will see, and that will be also checked for correctness by Agda. Ideally, all code in the documentation should be of this form: both visible and valid.

```
It can appear stand-alone:
::
 data Bool : Set where
 true false : Bool
Or at the end of a paragraph::
 data Bool : Set where
 true false : Bool
Here ends the code fragment.
```


## Result:

It can appear stand-alone:

```
data Bool : Set where
 true false : Bool
```

Or at the end of a paragraph:

```
data Bool : Set where
 true false : Bool
```

Here ends the code fragment.

Warning: Remember to always leave a blank like after the : : . Otherwise, the code will be checked by Agda, but it will appear as regular paragraph text in the documentation.

## Visible, unchecked code examples

This is code that the reader will see, but will not be checked by Agda. It is useful for examples of incorrect code, program output, or code in languages different from Agda.

```
.. code-block:: agda
 -- This is not a valid definition
 \omega:}\forall\textrm{a}->\textrm{a
 \omegax = x
.. code-block:: haskell
 -- This is haskell code
 data Bool = True | False
```


## Result:

```
-- This is not a valid definition
\omega: \foralla }->\textrm{a
\omega x = x
```

```
-- This is haskell code
data Bool = True | False
```


## Invisible, checked code examples

This is code that is not shown to the reader, but which is used to typecheck the code that is actually displayed.
This might be definitions that are well known enough that do not need to be shown again.

```
..
 ::
 data Nat : Set where
 zero : Nat
 suc : Nat }->\mathrm{ Nat
::
add : Nat }->\mathrm{ Nat }->\mathrm{ Nat
 add zero y = y
 add (suc x) y = suc (add x y)
```


## Result:

```
add : Nat }->\mathrm{ Nat }->\mathrm{ Nat
add zero y = y
add (suc x) y = suc (add x y)
```


## File structure

Documentation literate files (.lagda.*) are type-checked as whole Agda files, as if all literate text was replaced by whitespace. Thus, indentation is interpreted globally.

## Namespacing

In the documentation, files are typechecked starting from the doc/user-manual/ root. For example, the file doc/user-manual/language/data-types.lagda.rst should start with a hidden code block declaring the name of the module as language.data-types:

```
..
 ::
 module language.data-types where
```


## Scoping

Sometimes you will want to use the same name in different places in the same documentation file. You can do this by using hidden module declarations to isolate the definitions from the rest of the file.

```
..
 ::
 module scoped-1 where
: :
 foo : Nat
 foo = 42
..
 ::
 module scoped-2 where
 ::
```

(continued from previous page)

```
foo : Nat
fOO = 66
```


## Result:

```
foo : Nat
foo = 42
```


## chapter 6

## The Agda Team and License

Agda 2 was originally written by Ulf Norell, partially based on code from Agda 1 by Catarina Coquand and Makoto Takeyama, and from Agdalight by Ulf Norell and Andreas Abel.

Agda 2 is currently actively developed mainly by (in alphabetical order):

- Andreas Abel
- Guillaume Allais
- Liang-Ting Chen
- Jesper Cockx
- Matthew Daggitt
- Nils Anders Danielsson
- Ulf Norell
- Andrés Sicard-Ramírez
- Andrea Vezzosi

Agda 2 has received major contributions by the following developers, amongst others. Some contributors have pioneered a feature which shall be mentioned here. But many have worked on these features for improvements and maintenance.

- Andreas Abel: termination checker, sized types, irrelevance, copatterns, erasure
- Guillaume Allais: warnings, pattern guards, standard library 1.0 and above
- Stevan Andjelkovic: LaTeX backend
- Miëtek Bak: Agda logo
- Marcin Benke: original "Alonzo" compiler to Haskell
- Jean-Philippe Bernardy: syntax declarations
- Guillaume Brunerie
- James Chapman
- Liang-Ting Chen: github workflows
- Jesper Cockx: rewriting, unification--without-K
- Catarina Coquand: Agda 1
- Matthew Daggitt: standard library 1.0 and above
- Nils Anders Danielsson: efficient positivity checker, HTML backend, highlighting, standard library, --erased-cubical
- Dominique Devriese: instance arguments
- Péter Diviánszky: web frontent, variable declarations
- Robert Estelle: refactoring of backends, main driver
- Olle Fredriksson: Epic compiler backend
- Paolo Giarrusso
- Adam Gundry: pattern synonyms
- Daniel Gustafsson: Epic compiler backend
- Philipp Hausmann: treeless compiler, UHC compiler backend, testsuite runner, Travis CI
- Kuen-Bang Hou "favonia"
- Patrik Jansson
- Alan Jeffrey: JavaScript compiler backend
- Wolfram Kahl
- Wen Kokke
- John Leo
- Fredrik Lindblad: Agsy proof search "Auto"
- Víctor López Juan: "tog" prototype, markdown frontend, documentation
- Ting-Gan Lua
- Francesco Mazzoli: "tog" prototype
- Stefan Monnier
- Guilhem Moulin: highlighting
- Fredrik Nordvall Forsberg: pattern lambdas, warnings
- Ulf Norell: Agda 2
- Nicolas Pouillard: module record expressions
- Jonathan Prieto: Agda package manager
- Christian Sattler
- Andrés Sicard-Ramírez: Agda releases, Travis CI
- Makoto Takeyama: Agda 1, Emacs mode, "MAlonzo" compiler to Haskell, serialization
- Andrea Vezzosi: Cubical Agda, Agda-flat, Agda-parametric, Guarded Cubical Agda
- Noam Zeilberger: pattern lambdas
- Tesla Ice Zhang

The full list of code and documentation contributors (more than 170) is available at https://github.com/agda/agda/ graphs/contributors or from the git repository via git shortlog -sne. Numerous further individuals have contributed to Agda by reporting issues, building backends and editor support, packaging Agda etc.
The Agda license is here.

## CHAPTER 7

Indices and tables

- genindex
- search


## Bibliography

[McBride2004] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 2004. http://strictlypositive.org/vfl.pdf.

## Symbols

+RTS -s -RTS
command line option, 233
-allow-exec
command line option, 193
-allow-incomplete-matches
command line option, 193
-allow-unsolved-metas
command line option, 193
-auto-inline
command line option, 194
-caching, -no-caching
command line option, 192
-call-by-name
command line option, 194
-compile-dir=\{DIR\}
command line option, 191
-confluence-check, -local-confluence-check
command line option, 193
-copatterns, -no-copatterns
command line option, 192
-count-clusters
command line option, 191
$-c s s=\{U R L\}$
command line option, 191
-cubical
command line option, 193
-cumulativity, -no-cumulativity
command line option, 195
-dependency-graph=\{FILE $\}$
command line option, 191
-double-check
command line option, 194
-erased-cubical
command line option, 193
-exact-split, -no-exact-split
command line option, 193
-experimental-irrelevance
command line option, 193
-guardedness, -no-guardedness command line option, 194
-help[=\{TOPIC\}], -? [\{TOPIC\}] command line option, 190
-html
command line option, 191
-html-dir=\{DIR $\}$
command line option, 191
-html-highlight=[code, all, auto]
command line option, 191
-ignore-all-interfaces
command line option, 191
-ignore-interfaces
command line option, 191
-include-path=\{DIR\}, $-i=\{D I R\}$
command line option, 191
-injective-type-constructors command line option, 193
-instance-search-depth=\{N\} command line option, 194
-interaction
command line option, 190
-interaction-json command line option, 190
-interactive, -I command line option, 190
-inversion-max-depth=\{N\} command line option, 194
-irrelevant-projections, -no-irrelevant-projections command line option, 194
-keep-pattern-variables command line option, 194
-latex
command line option, 191
-latex-dir=\{DIR\}
command line option, 191
-library-file=\{FILE\}
command line option, 192
-library=\{DIR\}, -l=\{LIB $\}$
command line option, 192
-local-interfaces
command line option, 192
-no-auto-inline
command line option, 194
-no-default-libraries
command line option, 192
-no-eta-equality
command line option, 193
-no-fast-reduce
command line option, 194
-no-flat-split
command line option, 193
-no-forcing
command line option, 195
-no-import-sorts
command line option, 195
-no-libraries
command line option, 192
-no-main
command line option, 191
-no-pattern-matching
command line option, 193
-no-positivity-check
command line option, 193
-no-print-pattern-synonyms
command line option, 195
-no-projection-like
command line option, 190
-no-syntactic-equality
command line option, 195
-no-termination-check
command line option, 193 -no-unicode
command line option, 192 -omega-in-omega
command line option, 195 -only-scope-checking
command line option, 190
-overlapping-instances, -no-overlapping-instances
command line option, 194
-postfix-projections
command line option, 192
-print-agda-dir
command line option, 190
-rewriting
command line option, 193
-safe
command line option, 195
-show-implicit
command line option, 192
-show-irrelevant
command line option, 192
-sized-types, -no-sized-types
command line option, 195
-subtyping, -no-subtyping
command line option, 195
-termination-depth $=\{N\}$
command line option, 194
-type-in-type
command line option, 195
-universe-polymorphism,
-no-universe-polymorphism
command line option, 195
-verbose $=\{N\},-v=\{N\}$
command line option, 192
-version, -V
command line option, 190
-vim
command line option, 191
-warning=\{GROUP|FLAG\}, -W \{GROUP|FLAG\}
command line option, 193
-with-K
command line option, 194
-with-compiler=\{PATH\}
command line option, 191
-without-K
command line option, 194
-vprofile.definitions:10
command line option, 233
-vprofile.modules:10
command line option, 233
-vprofile: 7
command line option, 233

## A

AbsurdPatternRequiresNoRHS
command line option, 196
AGDA_DIR, 191, 211, 212
all
command line option, 195

## C

CantGeneralizeOverSorts
command line option, 196
CoInfectiveImport
command line option, 196
command line option
+RTS -s -RTS, 233
-allow-exec, 193
-allow-incomplete-matches, 193
-allow-unsolved-metas, 193
-auto-inline, 194
-caching, -no-caching, 192
-call-by-name, 194
-compile-dir=\{DIR\}, 191

```
-confluence-check,
 -local-confluence-check,193
-copatterns, -no-copatterns,192
-count-clusters,191
-cSS={URL},191
-cubical,193
-cumulativity, -no-cumulativity,195
-dependency-graph={FILE},191
-double-check,194
-erased-cubical,193
-exact-split, -no-exact-split,193
-experimental-irrelevance,193
-guardedness, -no-guardedness,194
-help[={TOPIC}], -?[{TOPIC}],190
-html,191
-html-dir={DIR},191
-html-highlight=[code,all,auto], 191
-ignore-all-interfaces,191
-ignore-interfaces,191
-include-path={DIR}, -i={DIR},191
-injective-type-constructors,193
-instance-search-depth={N},194
-interaction,190
-interaction-json,190
-interactive, -I,190
-inversion-max-depth={N},194
-irrelevant-projections,
 -no-irrelevant-projections,194
-keep-pattern-variables, 194
-latex,191
-latex-dir={DIR},191
-library-file={FILE},192
-library={DIR}, -l={LIB},192
-local-interfaces,192
-no-auto-inline,194
-no-default-libraries, 192
-no-eta-equality,193
-no-fast-reduce,194
-no-flat-split,193
-no-forcing,195
-no-import-sorts,195
-no-libraries,192
-no-main,191
-no-pattern-matching, 193
-no-positivity-check,193
-no-print-pattern-synonyms,195
-no-projection-like,190
-no-syntactic-equality,195
-no-termination-check, 193
-no-unicode,192
-omega-in-omega,195
-only-scope-checking, 190
-overlapping-instances,
 -no-overlapping-instances,194
```

-postfix-projections, 192
-print-agda-dir, 190
-rewriting, 193
-safe, 195
-show-implicit, 192
-show-irrelevant, 192
-sized-types, -no-sized-types, 195
-subtyping, -no-subtyping, 195
-termination-depth=\{N\}, 194
-type-in-type, 195
-universe-polymorphism,
-no-universe-polymorphism, 195
-verbose $=\{N\},-$ v=\{N\}, 192
-version, -V, 190
-vim, 191
-warning=\{GROUP |FLAG \}, -W
\{GROUP |FLAG \}, 193
-with-K, 194
-with-compiler=\{PATH\}, 191
-without-K, 194
-vprofile.definitions:10, 233
-vprofile.modules:10, 233
-vprofile:7,233
AbsurdPatternRequiresNoRHS, 196
all, 195
CantGeneralizeOverSorts, 196
CoInfectiveImport, 196
CoverageIssue, 196
CoverageNoExactSplit, 196
cpphs, 12
debug, 13
DeprecationWarning, 196
EmptyAbstract, 196
EmptyInstance, 196
EmptyMacro, 196
EmptyMutual, 196
EmptyPostulate, 196
EmptyPrimitive, 196
EmptyPrivate, 196
EmptyRewritePragma, 196
enable-cluster-counting, 13
ignore, 196
IllformedAsClause, 196
InfectiveImport, 196
InstanceArgWithExplicitArg, 196
InstanceNoOutput TypeName, 196
InstanceWithExplicitArg, 197
InvalidCatchallPragma, 197
InvalidNoPositivityCheckPragma, 197
InvalidTerminationCheckPragma, 197
InversionDepthReached, 197
LibUnknownField, 197
MissingDefinitions, 197
ModuleDoesntExport, 197

NotAllowedInMutual, 197
NotStrictlyPositive, 197
OldBuiltin, 197
optimise-heavily, 13
OverlappingTokensWarning, 197
PolarityPragmasButNotPostulates, 197
PragmaCompiled, 197
PragmaCompileErased, 197
PragmaNoTerminationCheck, 197
RewriteMaybeNonConfluent, 197
RewriteNonConfluent, 197
SafeFlagNonTerminating, 197
SafeFlagNoPositivityCheck, 197
SafeFlagNoUniverseCheck, 197
SafeFlagPolarity, 198
SafeFlagPostulate, 198
SafeFlagPragma, 198
SafeFlagTerminating, 198
SafeFlagWithoutKFlagPrimEraseEquality, 198
ShadowingInTelescope, 198
TerminationIssue, 198
UnknownFixityInMixfixDecl, 198
UnknownNamesInFixityDecl, 198
UnknownNamesInPolarityPragmas, 198
UnreachableClauses, 198
UnsolvedConstraints, 198
UnsolvedInteractionMetas, 198
UnsolvedMetaVariables, 198
UselessAbstract, 198
UselessInline, 198
UselessInstance, 198
UselessPrivate, 198
UselessPublic, 198
warn., 196
WithoutKFlagPrimEraseEquality, 198
WrongInstanceDeclaration, 198
CoverageIssue
command line option, 196
CoverageNoExactSplit
command line option, 196
cpphs
command line option, 12

## D

debug
command line option, 13
DeprecationWarning
command line option, 196

## E

EmptyAbstract
command line option, 196
EmptyInstance
command line option, 196
EmptyMacro
command line option, 196
EmptyMutual
command line option, 196
EmptyPostulate command line option, 196
EmptyPrimitive
command line option, 196
EmptyPrivate
command line option, 196
EmptyRewritePragma
command line option, 196
enable-cluster-counting
command line option, 13
environment variable
AGDA_DIR, 191, 211, 212
ignore
command line option, 196
IllformedAsClause
command line option, 196
InfectiveImport
command line option, 196
InstanceArgWithExplicitArg command line option, 196
InstanceNoOutput TypeName command line option, 196
InstanceWithExplicitArg command line option, 197
InvalidCatchallPragma command line option, 197
InvalidNoPositivityCheckPragma command line option, 197
InvalidTerminationCheckPragma command line option, 197
InversionDepthReached command line option, 197

## L

LibUnknownField command line option, 197

M
MissingDefinitions
command line option, 197
ModuleDoesntExport
command line option, 197
N
NotAllowedInMutual
command line option, 197
NotStrictlyPositive
command line option, 197

## O

OldBuiltin
command line option, 197
optimise-heavily
command line option, 13
OverlappingTokensWarning
command line option, 197

## P

PolarityPragmasButNotPostulates command line option, 197
PragmaCompiled
command line option, 197
PragmaCompileErased
command line option, 197
PragmaNoTerminationCheck
command line option, 197

## R

RewriteMaybeNonConfluent command line option, 197
RewriteNonConfluent
command line option, 197

## S

SafeFlagNonTerminating
command line option, 197
SafeFlagNoPositivityCheck
command line option, 197
SafeFlagNoUniverseCheck command line option, 197
SafeFlagPolarity
command line option, 198
SafeFlagPostulate
command line option, 198
SafeFlagPragma
command line option, 198
SafeFlagTerminating
command line option, 198
SafeFlagWithoutKFlagPrimEraseEquality command line option, 198
ShadowingInTelescope
command line option, 198

## T

TerminationIssue
command line option, 198

## U

UnknownFixityInMixfixDecl
command line option, 198
UnknownNamesInFixityDecl
command line option, 198
UnknownNamesInPolarityPragmas
command line option, 198
Unreachableclauses
command line option, 198
UnsolvedConstraints command line option, 198
UnsolvedInteractionMetas
command line option, 198
UnsolvedMetaVariables
command line option, 198
UselessAbstract
command line option, 198
UselessInline
command line option, 198
UselessInstance command line option, 198
UselessPrivate
command line option, 198
UselessPublic
command line option, 198
W
warn.
command line option, 196
WithoutKFlagPrimEraseEquality
command line option, 198
WrongInstanceDeclaration
command line option, 198


[^0]:    Note: When the -exact-split flag is enabled, catchall clauses should be marked explicitly by a catchall pragma ( $\{$-\# CATCHALL \#-\}).

[^1]:    ${ }^{1}$ Instance goal verification is buggy at the moment. See issue \#1322.

[^2]:    －Example：the Pair type constructor
    －Declaring，constructing and decomposing records

[^3]:    - Here C is indented further than B :

