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CHAPTER 1

Overview

Note: The Agda User Manual is a work-in-progress and is still incomplete. Contributions, additions and corrections
to the Agda manual are greatly appreciated. To do so, please open a pull request or issue on the Github Agda page.

This is the manual for the Agda programming language, its type checking, compilation and editing system and related
tools.

A description of the Agda language is given in chapter Language Reference. Guidance on how the Agda editing and
compilation system can be used can be found in chapter Tools.
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CHAPTER 2

Getting Started

Installation

Debian / Ubuntu

Prebuilt packages are available for Debian testing/unstable and Ubuntu from Karmic onwards. To install:

apt-get install agda-mode

This should install Agda and the Emacs mode.

The standard library is available in Debian testing/unstable and Ubuntu from Lucid onwards. To install:

apt-get install agda-stdlib

Fedora

Agda is packaged in Fedora (since before Fedora 18).

yum install Agda

will pull in emacs-agda-mode and ghc-Agda-devel.

NixOS

Agda is part of the Nixpkgs collection that is used by http://nixos.org/nixos. To install Agda, type:

nix-env -iA haskellPackages.Agda

If you’re just interested in the library, you can also install the library without the executable. Neither the emacs mode
nor the Agda standard library are currently installed automatically, though.

3
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OS X

Homebrew provides prebuilt packages for OS X. To install:

brew install agda

This should take less than a minute, and install Agda together with the Emacs mode and the standard library.

By default, the standard library is installed in /usr/local/lib/agda/. To use the standard library, it is con-
venient to add /usr/local/lib/agda/standard-library.agda-lib to ~/.agda/libraries, and
specify standard-library in ~/.agda/defaults. Note this is not performed automatically.

It is also possible to install --without-stdlib, --without-ghc, or from --HEAD. Note this will require
building Agda from source.

For more information, refer to the Homebrew documentation.

4 Chapter 2. Getting Started
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CHAPTER 3

Language Reference

Abstract definitions

Definitions can be marked as abstract, for the purpose of hiding implementation details, or to speed up type-checking
of other parts. In essence, abstract definitions behave like postulates, thus, do not reduce/compute. For instance,
proofs whose content does not matter could be marked abstract, to prevent Agda from unfolding them (which might
slow down type-checking).

As a guiding principle, all the rules concerning abstract are designed to prevent the leaking of implementation
details of abstract definitions. Similar concepts of other programming language include (non-representative sample):
UCSD Pascal’s and Java’s interfaces and ML’s signatures. (Especially when abstract definitions are used in combina-
tion with modules.)

Synopsis

• Declarations can be marked as abstract using the block keyword abstract.

• Outside of abstract blocks, abstract definitions do not reduce, they are treated as postulates, in particular:

– Abstract functions never match, thus, do not reduce.

– Abstract data types do not expose their constructors.

– Abstract record types do not expose their fields nor constructor.

– Other declarations cannot be abstract.

• Inside abstract blocks, abstract definitions reduce while type checking definitions, but not while checking their
type signatures. Otherwise, due to dependent types, one could leak implementation details (e.g. expose reduc-
tion behavior by using propositional equality).

• Inside private type signatures in abstract blocks, abstract definitions do reduce. However, there are some
problems with this. See Issue #418.

• The reach of the abstract keyword block extends recursively to the where-blocks of a function and the
declarations inside of a record declaration, but not inside modules declared in an abstract block.

5
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Examples

Integers can be implemented in various ways, e.g. as difference of two natural numbers:

module Integer where

abstract

= Nat × Nat

0 :
0 = 0 , 0

1 :
1 = 1 , 0

_+_ : (x y : ) →
(p , n) + (p' , n') = (p + p') , (n + n')

-_ : →
- (p , n) = (n , p)

__ : (x y : ) → Set
(p , n) (p' , n') = (p + n') (p' + n)

private
postulate

+comm : n m → (n + m) (m + n)

inv : x → (x + (- x)) 0
inv (p , n) rewrite +comm (p + n) 0 | +comm p n = refl

Using abstract we do not give away the actual representation of integers, nor the implementation of the operations.
We can construct them from 0, 1, _+_, and -, but only reason about equality with the provided lemma inv.

The following property shape-of-0 of the integer zero exposes the representation of integers as pairs. As such,
it is rejected by Agda: when checking its type signature, proj1 x fails to type check since x is of abstract type .
Remember that the abstract definition of does not unfold in type signatures, even when in an abstract block! However,
if we make shape-of- private, unfolding of abstract definitions like is enabled, and we succeed:

-- A property about the representation of zero integers:

abstract
private

shape-of-0 : (x : ) (is0 : x 0) → proj1 x proj2 x
shape-of-0 (p , n) refl rewrite +comm p 0 = refl

By requiring shape-of-0 to be private to type-check, leaking of representation details is prevented.

Scope of abstraction

In child modules, when checking an abstract definition, the abstract definitions of the parent module are transparent:

module M1 where
abstract
x = 0

6 Chapter 3. Language Reference



Agda Documentation, Release 2.5.2

module M2 where
abstract

x-is-0 : x 0
x-is-0 = refl

Thus, child modules can see into the representation choices of their parent modules. However, parent modules cannot
see like this into child modules, nor can sibling modules see through each others abstract definitions.

The reach of the abstract keyword does not extend into modules:

module Parent where
abstract
module Child where
y = 0

x = 0 -- to avoid "useless abstract" error

y-is-0 : Child.y 0
y-is-0 = refl

The declarations in module Child are not abstract!

Abstract definitions with where-blocks

Definitions in a where block of an abstract definition are abstract as well. This means, they can see through the
abstractions of their uncles:

module Where where
abstract
x : Nat
x = 0
y : Nat
y = x

where
xy : x 0
xy = refl

Type signatures in where blocks are private, so it is fine to make type abbreviations in where blocks of abstract
definitions:

module WherePrivate where
abstract
x : Nat
x = proj1 t

where
T = Nat × Nat
t : T
t = 0 , 1
p : proj1 t 0
p = refl

Note that if p was not private, application proj1 t in its type would be ill-formed, due to the abstract definition of
T.

Named where-modules do not make their declarations private, thus this example will fail if you replace x‘s where
by module M where.

3.1. Abstract definitions 7
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Built-ins

• Using the built-in types

• The unit type

• Booleans

• Natural numbers

• Integers

• Floats

• Lists

• Characters

• Strings

• Equality

• Universe levels

• Sized types

• Coinduction

• IO

• Literal overloading

• Reflection

• Rewriting

• Strictness

The Agda type checker knows about, and has special treatment for, a number of different concepts. The most prominent
is natural numbers, which has a special representation as Haskell integers and support for fast arithmetic. The surface
syntax of these concepts are not fixed, however, so in order to use the special treatment of natural numbers (say) you
define an appropriate data type and then bind that type to the natural number concept using a BUILTIN pragma.

Some built-in types support primitive functions that have no corresponding Agda definition. These functions are
declared using the primitive keyword by giving their type signature.

Using the built-in types

While it is possible to define your own versions of the built-in types and bind them using BUILTIN pragmas, it is
recommended to use the definitions in the Agda.Builtin modules. These modules are installed when you install
Agda and so are always available. For instance, built-in natural numbers are defined in Agda.Builtin.Nat. The
standard library and the agda-prelude reexport the definitions from these modules.

The unit type

module Agda.Builtin.Unit

The unit type is bound to the built-in UNIT as follows:

8 Chapter 3. Language Reference
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record : Set where
{-# BUILTIN UNIT #-}

Agda needs to know about the unit type since some of the primitive operations in the reflected type checking monad
return values in the unit type.

Booleans

module Agda.Builtin.Bool where

Built-in booleans are bound using the BOOLEAN, TRUE and FALSE built-ins:

data Bool : Set where
false true : Bool

{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}

Note that unlike for natural numbers, you need to bind the constructors separately. The reason for this is that Agda
cannot tell which constructor should correspond to true and which to false, since you are free to name them whatever
you like.

The only effect of binding the boolean type is that you can then use primitive functions returning booleans, such as
built-in NATEQUALS.

Natural numbers

module Agda.Builtin.Nat

Built-in natural numbers are bound using the NATURAL built-in as follows:

data Nat : Set where
zero : Nat
suc : Nat → Nat

{-# BUILTIN NATURAL Nat #-}

The names of the data type and the constructors can be chosen freely, but the shape of the datatype needs to match the
one given above (modulo the order of the constructors). Note that the constructors need not be bound explicitly.

Binding the built-in natural numbers as above has the following effects:

• The use of natural number literals is enabled. By default the type of a natural number literal will be Nat, but it
can be overloaded to include other types as well.

• Closed natural numbers are represented as Haskell integers at compile-time.

• The compiler backends compile natural numbers to the appropriate number type in the target language.

• Enabled binding the built-in natural number functions described below.

Functions on natural numbers

There are a number of built-in functions on natural numbers. These are special in that they have both an Agda definition
and a primitive implementation. The primitive implementation is used to evaluate applications to closed terms, and the

3.2. Built-ins 9



Agda Documentation, Release 2.5.2

Agda definition is used otherwise. This lets you prove things about the functions while still enjoying good performance
of compile-time evaluation. The built-in functions are the following:

_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}

_-_ : Nat → Nat → Nat
n - zero = n
zero - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS _-_ #-}

_*_ : Nat → Nat → Nat
zero * m = zero
suc n * m = (n * m) + m
{-# BUILTIN NATTIMES _*_ #-}

_==_ : Nat → Nat → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
{-# BUILTIN NATEQUALS _==_ #-}

_<_ : Nat → Nat → Bool
_ < zero = false
zero < suc _ = true
suc n < suc m = n < m
{-# BUILTIN NATLESS _<_ #-}

div-helper : Nat → Nat → Nat → Nat → Nat
div-helper k m zero j = k
div-helper k m (suc n) zero = div-helper (suc k) m n m
div-helper k m (suc n) (suc j) = div-helper k m n j
{-# BUILTIN NATDIVSUCAUX div-helper #-}

mod-helper : Nat → Nat → Nat → Nat → Nat
mod-helper k m zero j = k
mod-helper k m (suc n) zero = mod-helper 0 m n m
mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j
{-# BUILTIN NATMODSUCAUX mod-helper #-}

The Agda definitions are checked to make sure that they really define the corresponding built-in function. The def-
initions are not required to be exactly those given above, for instance, addition and multiplication can be defined by
recursion on either argument, and you can swap the arguments to the addition in the recursive case of multiplication.

The NATDIVSUCAUX and NATMODSUCAUX are built-ins bind helper functions for defining natural number division
and modulo operations, and satisfy the properties

div n (suc m) div-helper 0 m n m
mod n (suc m) mod-helper 0 m n m

10 Chapter 3. Language Reference
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Integers

module Agda.Builtin.Int

Built-in integers are bound with the INTEGER built-in to a data type with two constructors: one for positive and one
for negative numbers. The built-ins for the constructors are INTEGERPOS and INTEGERNEGSUC.

data Int : Set where
pos : Nat → Int
negsuc : Nat → Int

{-# BUILTIN INTEGER Int #-}
{-# BUILTIN INTEGERPOS pos #-}
{-# BUILTIN INTEGERNEGSUC negsuc #-}

Here negsuc n represents the integer -n - 1. Unlike for natural numbers, there is no special representation of
integers at compile-time since the overhead of using the data type compared to Haskell integers is not that big.

Built-in integers support the following primitive operation (given a suitable binding for String):

primitive
primShowInteger : Int → String

Floats

module Agda.Builtin.Float

Floating point numbers are bound with the FLOAT built-in:

postulate Float : Set
{-# BUILTIN FLOAT Float #-}

This lets you use floating point literals. Floats are represented by the type checker as IEEE 754 binary64 double
precision floats, with the restriction that there is exactly one NaN value. The following primitive functions are available
(with suitable bindings for Nat, Bool, String and Int):

primitive
primNatToFloat : Nat → Float
primFloatPlus : Float → Float → Float
primFloatMinus : Float → Float → Float
primFloatTimes : Float → Float → Float
primFloatNegate : Float → Float
primFloatDiv : Float → Float → Float
primFloatEquality : Float → Float → Bool
primFloatNumericalEquality : Float → Float → Bool
primFloatNumericalLess : Float → Float → Bool
primRound : Float → Int
primFloor : Float → Int
primCeiling : Float → Int
primExp : Float → Float
primLog : Float → Float
primSin : Float → Float
primCos : Float → Float
primTan : Float → Float
primASin : Float → Float
primACos : Float → Float
primATan : Float → Float

3.2. Built-ins 11
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primATan2 : Float → Float → Float
primShowFloat : Float → String

The primFloatEquality primitive is intended to be used for decidable propositional equality. To enable proof
carrying comparisons while preserving consisteny, the following laws apply:

• primFloatEquality NaN NaN returns true.

• primFloatEquality NaN (primFloatNegate NaN) returns true.

• primFloatEquality 0.0 -0.0 returns false.

For numerical comparisons, use the primFloatNumericalEquality and primFloatNumericalLess
primitives. These are implemented by the corresponding Haskell functions with the following behaviour and ex-
ceptions:

• primFloatNumericalEquality 0.0 -0.0 returns true.

• primFloatNumericalEquality NaN NaN returns false.

• primFloatNumericalLess NaN NaN returns false.

• primFloatNumericalLess (primFloatNegate NaN) (primFloatNegate NaN) returns
false.

• primFloatNumericalLess NaN (primFloatNegate NaN) returns false.

• primFloatNumericalLess (primFloatNegate NaN) NaN returns false.

• primFloatNumericalLess sorts NaN below everything but negative infinity.

• primFloatNumericalLess -0.0 0.0 returns false.

Warning: Do not use primFloatNumericalEquality to establish decidable propositional equality. Doing
so makes Agda inconsistent, see Issue #2169.

Lists

module Agda.Builtin.List

Built-in lists are bound using the LIST, NIL and CONS built-ins:

data List {a} (A : Set a) : Set a where
[] : List A
__ : (x : A) (xs : List A) → List A

{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS __ #-}
infixr 5 __

Even though Agda could easily tell which constructor is NIL and which is CONS you still have to bind them separately.

As with booleans, the only effect of binding the LIST built-in is to let you use primitive functions working with lists,
such as primStringToList and primStringFromList.

12 Chapter 3. Language Reference
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Characters

module Agda.Builtin.Char

The character type is bound with the CHARACTER built-in:

postulate Char : Set
{-# BUILTIN CHAR Char #-}

Binding the character type lets you use character literals. The following primitive functions are available on characters
(given suitable bindings for Bool, Nat and String):

primitive
primIsLower : Char → Bool
primIsDigit : Char → Bool
primIsAlpha : Char → Bool
primIsSpace : Char → Bool
primIsAscii : Char → Bool
primIsLatin1 : Char → Bool
primIsPrint : Char → Bool
primIsHexDigit : Char → Bool
primToUpper : Char → Char
primToLower : Char → Char
primCharToNat : Char → Nat
primNatToChar : Nat → Char
primShowChar : Char → String

These functions are implemented by the corresponding Haskell functions from Data.Char (ord and chr for
primCharToNat and primNatToChar). To make primNatToChar total chr is applied to the natural number
modulo 0x110000.

Strings

module Agda.Builtin.String

The string type is bound with the STRING built-in:

postulate String : Set
{-# BUILTIN STRING String #-}

Binding the string type lets you use string literals. The following primitive functions are available on strings (given
suitable bindings for Bool, Char and List):

postulate primStringToList : String → List Char
postulate primStringFromList : List Char → String
postulate primStringAppend : String → String → String
postulate primStringEquality : String → String → Bool
postulate primShowString : String → String

String literals can be overloaded.

3.2. Built-ins 13
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Equality

module Agda.Builtin.Equality

The identity type can be bound to the built-in EQUALITY as follows:

infix 4 __
data __ {a} {A : Set a} (x : A) : A → Set a where

refl : x x
{-# BUILTIN EQUALITY __ #-}
{-# BUILTIN REFL refl #-}

This lets you use proofs of type lhs rhs in the rewrite construction.

primTrustMe

module Agda.Builtin.TrustMe

Binding the built-in equality type also enables the primTrustMe primitive:

primitive
primTrustMe : {a} {A : Set a} {x y : A} → x y

As can be seen from the type, primTrustMe must be used with the utmost care to avoid inconsistencies. What
makes it different from a postulate is that if x and y are actually definitionally equal, primTrustMe reduces to
refl. One use of primTrustMe is to lift the primitive boolean equality on built-in types like String to something
that returns a proof object:

eqString : (a b : String) → Maybe (a b)
eqString a b = if primStringEquality a b

then just primTrustMe
else nothing

With this definition eqString "foo" "foo" computes to just refl. Another use case is to erase computa-
tionally expensive equality proofs and replace them by primTrustMe:

eraseEquality : {a} {A : Set a} {x y : A} → x y → x y
eraseEquality _ = primTrustMe

Universe levels

module Agda.Primitive

Universe levels are also declared using BUILTIN pragmas. In contrast to the Agda.Builtin modules, the Agda.
Primitive module is auto-imported and thus it is not possible to change the level built-ins. For reference these are
the bindings:

postulate
Level : Set
lzero : Level
lsuc : Level → Level
__ : Level → Level → Level

14 Chapter 3. Language Reference
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{-# BUILTIN LEVEL Level #-}
{-# BUILTIN LEVELZERO lzero #-}
{-# BUILTIN LEVELSUC lsuc #-}
{-# BUILTIN LEVELMAX __ #-}

Sized types

module Agda.Builtin.Size

The built-ins for sized types are different from other built-ins in that the names are defined by the BUILTIN pragma.
Hence, to bind the size primitives it is enough to write:

{-# BUILTIN SIZEUNIV SizeUniv #-} -- SizeUniv : SizeUniv
{-# BUILTIN SIZE Size #-} -- Size : SizeUniv
{-# BUILTIN SIZELT Size<_ #-} -- Size<_ : ..Size → SizeUniv
{-# BUILTIN SIZESUC ↑_ #-} -- ↑_ : Size → Size
{-# BUILTIN SIZEINF 𝜔 #-} -- 𝜔 : Size
{-# BUILTIN SIZEMAX __ #-} -- __ : Size → Size → Size

Coinduction

module Agda.Builtin.Coinduction

The following built-ins are used for coinductive definitions:

postulate
∞ : {a} (A : Set a) → Set a
_ : {a} {A : Set a} → A → ∞ A
: {a} {A : Set a} → ∞ A → A

{-# BUILTIN INFINITY ∞ #-}
{-# BUILTIN SHARP _ #-}
{-# BUILTIN FLAT #-}

See Coinduction for more information.

IO

module Agda.Builtin.IO

The sole purpose of binding the built-in IO type is to let Agda check that the main function has the right type (see
Compilers).

postulate IO : Set → Set
{-# BUILTIN IO IO #-}

Literal overloading

module Agda.Builtin.FromNat
module Agda.Builtin.FromNeg
module Agda.Builtin.FromString
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The machinery for overloading literals uses built-ins for the conversion functions.

Reflection

module Agda.Builtin.Reflection

The reflection machinery has built-in types for representing Agda programs. See Reflection for a detailed description.

Rewriting

The experimental and totally unsafe rewriting machinery (not to be confused with the rewrite construct) has a built-in
REWRITE for the rewriting relation:

postulate __ : {a} {A : Set a} → A → A → Set a
{-# BUILTIN REWRITE __ #-}

There is no Agda.Builtin module for the rewrite relation since different rewriting experiments typically want
different relations.

Strictness

module Agda.Builtin.Strict

There are two primitives for controlling evaluation order:

primitive
primForce : {a b} {A : Set a} {B : A → Set b} (x : A) → ( x → B x) → B x
primForceLemma : {a b} {A : Set a} {B : A → Set b} (x : A) (f : x → B x) →

→˓primForce x f f x

where __ is the built-in equality. At compile-time primForce x f evaluates to f x when x is in weak head
normal form (whnf), i.e. one of the following:

• a constructor application

• a literal

• a lambda abstraction

• a type constructor application (data or record type)

• a function type

• a universe (Set _)

Similarly primForceLemma x f, which lets you reason about programs using primForce, evaluates to refl
when x is in whnf. At run-time, primForce e f is compiled (by the GHC and UHC backends) to let x = e
in seq x (f x).

For example, consider the following function:

-- pow’ n a = a 2
pow’ : Nat → Nat → Nat
pow’ zero a = a
pow’ (suc n) a = pow’ n (a + a)
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At compile-time this will be exponential, due to call-by-name evaluation, and at run-time there is a space leak caused
by unevaluated a + a thunks. Both problems can be fixed with primForce:

infixr 0 _$!_
_$!_ : {a b} {A : Set a} {B : A → Set b} → ( x → B x) → x → B x
f $! x = primForce x f

-- pow n a = a 2
pow : Nat → Nat → Nat
pow zero a = a
pow (suc n) a = pow n $! a + a

Coinduction

Coinductive Records

It is possible to define the type of infinite lists (or streams) of elements of some type A as follows,

record Stream (A : Set) : Set where
coinductive
field
hd : A
tl : Stream A

As opossed to inductive record types, we have to introduce the keyword coinductive before defining the fields
that constitute the record.

It is interesting to note that is not neccessary to give an explicit constructor to the record type Stream A.

We can as well define bisimilarity (equivalence) of a pair of Stream A as a coinductive record.

record __ {A : Set} (xs : Stream A) (ys : Stream A) : Set where
coinductive
field
hd- : hd xs hd ys
tl- : tl xs tl ys

Using copatterns we can define a pair of functions on Stream such that one returns a Stream with the elements in
the even positions and the other the elements in odd positions.

even : {A} → Stream A → Stream A
hd (even x) = hd x
tl (even x) = even (tl (tl x))

odd : {A} → Stream A → Stream A
odd x = even (tl x)

split : {A } → Stream A → Stream A × Stream A
split xs = even xs , odd xs

And merge a pair of Stream by interleaving their elements.

merge : {A} → Stream A × Stream A → Stream A
hd (merge (fst , snd)) = hd fst
tl (merge (fst , snd)) = merge (snd , tl fst)
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Finally, we can prove that split is the left inverse of merge.

merge-split-id : {A} (xs : Stream A) → merge (split xs) xs
hd- (merge-split-id _) = refl
tl- (merge-split-id xs) = merge-split-id (tl xs)

Old Coinduction

Note: This is the old way of coinduction support in Agda. You are advised to use Coinductive Records instead.

Note: The type constructor ∞ can be used to prove absurdity!

To use coinduction it is recommended that you import the module Coinduction from the standard library. Coinductive
types can then be defined by labelling coinductive occurrences using the delay operator ∞:

data Co : Set where
zero : Co
suc : ∞ Co → Co

The type ∞ A can be seen as a suspended computation of type A. It comes with delay and force functions:

_ : {a} {A : Set a} → A → ∞ A
: {a} {A : Set a} → ∞ A → A

Values of coinductive types can be constructed using corecursion, which does not need to terminate, but has to be
productive. As an approximation to productivity the termination checker requires that corecursive definitions are
guarded by coinductive constructors. As an example the infinite “natural number” can be defined as follows:

inf : Co
inf = suc ( inf)

The check for guarded corecursion is integrated with the check for size-change termination, thus allowing interesting
combinations of inductive and coinductive types. We can for instance define the type of stream processors, along with
some functions:

-- Infinite streams.

data Stream (A : Set) : Set where
__ : (x : A) (xs : ∞ (Stream A)) → Stream A

-- A stream processor SP A B consumes elements of A and produces
-- elements of B. It can only consume a finite number of A’s before
-- producing a B.

data SP (A B : Set) : Set where
get : (f : A → SP A B) → SP A B
put : (b : B) (sp : ∞ (SP A B)) → SP A B

-- The function eat is defined by an outer corecursion into Stream B
-- and an inner recursion on SP A B.

eat : {A B} → SP A B → Stream A → Stream B
eat (get f) (a as) = eat (f a) ( as)
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eat (put b sp) as = b eat ( sp) as

-- Composition of stream processors.

__ : {A B C} → SP B C → SP A B → SP A C
get f1 put x sp2 = f1 x sp2
put x sp1 sp2 = put x ( ( sp1 sp2))
sp1 get f2 = get (𝜆 x → sp1 f2 x)

It is also possible to define “coinductive families”. It is recommended not to use the delay constructor (_) in a construc-
tor’s index expressions. The following definition of equality between coinductive “natural numbers” is discouraged:

data _’_ : Co → Co → Set where
zero : zero ’ zero
suc : {m n} → ∞ (m ’ n) → suc ( m) ’ suc ( n)

The recommended definition is the following one:

data __ : Co → Co → Set where
zero : zero zero
suc : {m n} → ∞ ( m n) → suc m suc n

The current implementation of coinductive types comes with some limitations.

Copatterns

Consider the following record:

record Enumeration A : Set where
constructor enumeration
field
start : A
forward : A → A
backward : A → A

This gives an interfaces that allows us to move along the elements of a data type A.

For example, we can get the “third” element of a type A:

open Enumeration

3rd : {A : Set} → Enumeration A → A
3rd e = forward e (forward e (forward e (start e)))

Or we can go back 2 positions starting from a given a:

backward-2 : {A : Set} → Enumeration A → A → A
backward-2 e a = backward (backward a)
where
open Enumeration e

Now, we want to use these methods on natural numbers. For this, we need a record of type Enumeration Nat.
Without copatterns, we would specify all the fields in a single expression:
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open Enumeration

enum-Nat : Enumeration Nat
enum-Nat = record {

start = 0
; forward = suc
; backward = pred
}
where
pred : Nat → Nat
pred zero = zero
pred (suc x) = x

test1 : 3rd enum-Nat 3
test1 = refl

test2 : backward-2 enum-Nat 5 3
test2 = refl

Note that if we want to use automated case-splitting and pattern matching to implement one of the fields, we need to
do so in a separate definition.

With copatterns, we can define the fields of a record as separate declarations, in the same way that we would give
different cases for a function:

open Enumeration

enum-Nat : Enumeration Nat
start enum-Nat = 0
forward enum-Nat n = suc n
backward enum-Nat zero = zero
backward enum-Nat (suc n) = n

The resulting behaviour is the same in both cases:

test1 : 3rd enum-Nat 3
test1 = refl

test2 : backward-2 enum-Nat 5 3
test2 = refl

Copatterns in function definitions

In fact, we do not need to start at 0. We can allow the user to specify the starting element.

Without copatterns, we just add the extra argument to the function declaration:

open Enumeration

enum-Nat : Nat → Enumeration Nat
enum-Nat initial = record {

start = initial
; forward = suc
; backward = pred
}
where
pred : Nat → Nat
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pred zero = zero
pred (suc x) = x

test1 : 3rd (enum-Nat 10) 13
test1 = refl

With copatterns, the function argument must be repeated once for each field in the record:

open Enumeration

enum-Nat : Nat → Enumeration Nat
start (enum-Nat initial) = initial
forward (enum-Nat _) n = suc n
backward (enum-Nat _) zero = zero
backward (enum-Nat _) (suc n) = n

Mixing patterns and co-patterns

Instead of allowing an arbitrary value, we want to limit the user to two choices: 0 or 42.

Without copatterns, we would need an auxiliary definition to choose which value to start with based on the user-
provided flag:

open Enumeration

if_then_else_ : {A : Set} → Bool → A → A → A
if true then x else _ = x
if false then _ else y = y

enum-Nat : Bool → Enumeration Nat
enum-Nat ahead = record {

start = if ahead then 42 else 0
; forward = suc
; backward = pred
}
where
pred : Nat → Nat
pred zero = zero
pred (suc x) = x

With copatterns, we can do the case analysis directly by pattern matching:

open Enumeration

enum-Nat : Bool → Enumeration Nat
start (enum-Nat true) = 42
start (enum-Nat false) = 0
forward (enum-Nat _) n = suc n
backward (enum-Nat _) zero = zero
backward (enum-Nat _) (suc n) = n

Tip: When using copatterns to define an element of a record type, the fields of the record must be in scope. In the
examples above, we use open Enumeration to bring the fields of the record into scope.

Consider the first example:
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enum-Nat : Enumeration Nat
start enum-Nat = 0
forward enum-Nat n = suc n
backward enum-Nat zero = zero
backward enum-Nat (suc n) = n

If the fields of the Enumeration record are not in scope (in particular, the start field), then Agda will not be able
to figure out what the first copattern means:

Could not parse the left-hand side start enum-Nat
Operators used in the grammar:
None
when scope checking the left-hand side start enum-Nat in the
definition of enum-Nat

The solution is to open the record before using its fields:

open Enumeration

enum-Nat : Enumeration Nat
start enum-Nat = 0
forward enum-Nat n = suc n
backward enum-Nat zero = zero
backward enum-Nat (suc n) = n

Core language

Note: This is a stub

data Term = Var Int Elims
| Def QName Elims -- ^ @f es@, possibly a delta/iota-redex
| Con ConHead Args -- ^ @c vs@
| Lam ArgInfo (Abs Term) -- ^ Terms are beta normal. Relevance is

→˓ignored
| Lit Literal
| Pi (Dom Type) (Abs Type) -- ^ dependent or non-dependent function

→˓space
| Sort Sort
| Level Level
| MetaV MetaId Elims
| DontCare Term

-- ^ Irrelevant stuff in relevant position, but created
-- in an irrelevant context.

Data Types

Simple datatypes
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Example datatypes

In the introduction we already showed the definition of the data type of natural numbers (in unary notation):

data Nat : Set where
zero : Nat
suc : Nat → Nat

We give a few more examples. First the data type of truth values:

data Bool : Set where
true : Bool
false : Bool

The True set represents the trivially true proposition:

data True : Set where
tt : True

The False set has no constructor and hence no elements. It represent the trivially false proposition:

data False : Set where

Another example is the data type of non-empty binary trees with natural numbers in the leaves:

data BinTree : Set where
leaf : Nat → BinTree
branch : BinTree → BinTree → BinTree

Finally, the data type of Brouwer ordinals:

data Ord : Set where
zeroOrd : Ord
sucOrd : Ord → Ord
limOrd : (Nat → Ord) → Ord

General form

The general form of the definition of a simple datatype D is the following

data D : Set where
c1 : A1
...
c : A

The name D of the data type and the names c1, ..., c of the constructors must be new w.r.t. the current signature and
context, and the types A1, ..., A must be function types ending in D, i.e. they must be of the form

(y1 : B1) → ... → (y : B) → D

Parametrized datatypes

Datatypes can have parameters. They are declared after the name of the datatype but before the colon, for example:
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data List (A : Set) : Set where
[] : List A
__ : A → List A → List A

Indexed datatypes

In addition to parameters, datatypes can also have indices. In contrast to parameters which are required to be the same
for all constructors, indices can vary from constructor to constructor. They are declared after the colon as function
arguments to Set. For example, fixed-length vectors can be defined by indexing them over their length of type Nat:

data Vector (A : Set) : Nat → Set where
[] : Vector A zero
__ : {n : Nat} → A → Vector A n → Vector A (suc n)

Notice that the parameter A is bound once for all constructors, while the index {n : Nat} must be bound locally
in the constructor __.

Indexed datatypes can also be used to describe predicates, for example the predicate Even : Nat → Set can be
defined as follows:

data Even : Nat → Set where
even-zero : Even zero
even-plus2 : {n : Nat} → Even n → Even (suc (suc n))

General form

The general form of the definition of a (parametrized, indexed) datatype D is the following

data D (x1 : P1) ... (x : P) : (y1 : Q1) → ... → (y : Q) → Set where
c1 : A1
...
c : A

where the types A1, ..., A are function types of the form

(z1 : B1) → ... → (z : B) → D x1 ... x t1 ... t

Strict positivity

When defining a datatype D, Agda poses an additional requirement on the types of the constructors of D, namely that
D may only occur strictly positively in the types of their arguments.

Concretely, for a datatype with constructors c1 : A1, ..., c : A, Agda checks that each A has the form

(y1 : B1) → ... → (y : B) → D

where an argument types B of the constructors is either

• non-inductive (a side condition) and does not mention D at all,

• or inductive and has the form

(z1 : C1) → ... → (z : C) → D
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where D must not occur in any C.

The strict positivity condition rules out declarations such as

data Bad : Set where
bad : (Bad → Bad) → Bad
-- A B C
-- A is in a negative position, B and C are OK

since there is a negative occurrence of Bad in the type of the argument of the constructor. (Note that the corresponding
data type declaration of Bad is allowed in standard functional languages such as Haskell and ML.).

Non strictly-positive declarations are rejected because they admit non-terminating functions.

If the positivity check is disabled, so that a similar declaration of Bad is allowed, it is possible to construct a term of
the empty type, even without recursion.

{-# OPTIONS --no-positivity-check #-}

data : Set where

data Bad : Set where
bad : (Bad → ) → Bad

self-app : Bad →
self-app (bad f) = f (bad f)

absurd :
absurd = self-app (bad self-app)

For more general information on termination see Termination Checking.

Foreign Function Interface

Haskell FFI

Note: This section currently only applies to the GHC backend.

The FFI is controlled by five pragmas:

• IMPORT

• COMPILED_TYPE

• COMPILED_DATA

• COMPILED

• COMPILED_EXPORT

All FFI bindings are only used when executing programs and do not influence the type checking phase.
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The IMPORT pragma

{-# IMPORT HsModule #-}

The IMPORT pragma instructs the compiler to generate a Haskell import statement in the compiled code. The pragma
above will generate the following Haskell code:

import qualified HsModule

IMPORT pragmas can appear anywhere in a file.

The COMPILED_TYPE pragma

postulate D : Set
{-# COMPILED_TYPE D HsType #-}

The COMPILED_TYPE pragma tells the compiler that the postulated Agda type D corresponds to the Haskell type
HsType. This information is used when checking the types of COMPILED functions and constructors.

The COMPILED_DATA pragma

{-# COMPILED_DATA D HsD HsC1 .. HsCn #-}

The COMPILED_DATA pragma tells the compiler that the Agda datatype D corresponds to the Haskell datatype HsD
and that its constructors should be compiled to the Haskell constructors HsC1 .. HsCn. The compiler checks that
the Haskell constructors have the right types and that all constructors are covered.

Example:

data List (A : Set) : Set where
[] : List A
_::_ : A → List A → List A

{-# COMPILED_DATA List [] [] (:) #-}

Built-in Types

The GHC backend compiles certain Agda built-ins to special Haskell types. The mapping between Agda built-in types
and Haskell types is as follows:

Agda Built-in Haskell Type
STRING Data.Text.Text
CHAR Char
INTEGER Integer
BOOL Boolean
FLOAT Double

Warning: Agda FLOAT values have only one logical NaN value. At runtime, there might be multiple different
NaN representations present. All such NaN values must be treated equal by FFI calls to avoid making Agda
inconsistent.
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The COMPILED pragma

postulate f : a b → (a → b) → List a → List b
{-# COMPILED f HsCode #-}

The COMPILED pragma tells the compiler to compile the postulated function f to the Haskell Code HsCode.
HsCode can be an arbitrary Haskell term of the right type. This is checked by translating the given Agda type of
f into a Haskell type (see Translating Agda types to Haskell) and checking that this matches the type of HsCode.

Example:

postulate String : Set
{-# BUILTIN STRING String #-}

data Unit : Set where unit : Unit
{-# COMPILED_DATA Unit () () #-}

postulate
IO : Set → Set
putStrLn : String → IO Unit

{-# COMPILED_TYPE IO IO #-}
{-# COMPILED putStrLn putStrLn #-}

Polymorphic functions

Agda is a monomorphic language, so polymorphic functions are modeled as functions taking types as arguments.
These arguments will be present in the compiled code as well, so when calling polymorphic Haskell functions they
have to be discarded explicitly. For instance,

postulate
map : {A B : Set} → (A → B) → List A → List B

{-# COMPILED map (\_ _ → map) #-}

In this case compiled calls to map will still have A and B as arguments, so the compiled definition ignores its two first
arguments and then calls the polymorphic Haskell map function.

Handling typeclass constraints

The problem here is that Agda’s Haskell FFI doesn’t understand Haskell’s class system. If you look at this error
message, GHC complains about a missing class constraint:

No instance for (Graphics.UI.Gtk.ObjectClass xA)
arising from a use of Graphics.UI.Gtk.objectDestroy’

A work around to represent Haskell Classes in Agda is to use a Haskell datatype to represent the class constraint in a
way Agda understands:

{-# LANGUAGE GADTs #-}
data MyObjectClass a = ObjectClass a => Witness

We also need to write a small wrapper for the objectDestroy function in Haskell:
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myObjectDestroy :: MyObjectClass a -> Signal a (IO ())
myObjectDestroy Witness = objectDestroy

Notice that the class constraint disappeared from the Haskell type signature! The only missing part are the Agda FFI
bindings:

postulate
Window : Set
Signal : Set → Set → Set
MyObjectClass : Set → Set
windowInstance : MyObjectClass Window
myObjectDestroy : {a} → MyObjectClass a → Signal a Unit

{-# COMPILED_TYPE Window Window #-}
{-# COMPILED_TYPE Signal Signal #-}
{-# COMPILED_TYPE MyObjectClass MyObjectClass #-}
{-# COMPILED windowInstance (Witness :: MyObjectClass Window) #-}
{-# COMPILED myObjectDestroy (\_ → myObjectDestroy) #-}

Then you should be able to call this as follows in Agda:

p : Signal Window Unit
p = myObjectDestroy windowInstance

This is somewhat similar to doing a dictionary-translation of the Haskell class system and generates quite a bit of
boilerplate code.

The COMPILED_EXPORT pragma

New in version 2.3.4.

g : {a : Set} → a → a
g x = x

{-# COMPILED_EXPORT g hsNameForG #-}

The COMPILED_EXPORT pragma tells the compiler that the Agda function f should be compiled to a Haskell func-
tion called hsNameForF. Without this pragma, functions are compiled to Haskell functions with unpredictable names
and, as a result, cannot be invoked from Haskell. The type of hsNameForFwill be the translated type of f (see Trans-
lating Agda types to Haskell). If f is defined in file A/B.agda, then hsNameForF should be imported from module
MAlonzo.Code.A.B.

Example:

-- file IdAgda.agda
module IdAgda where

idAgda : {A : Set} → A → A
idAgda x = x

{-# COMPILED_EXPORT idAgda idAgda #-}

The compiled and exported function idAgda can then be imported and invoked from Haskell like this:

-- file UseIdAgda.hs
module UseIdAgda where
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import MAlonzo.Code.IdAgda (idAgda)
-- idAgda :: () -> a -> a

idAgdaApplied :: a -> a
idAgdaApplied = idAgda ()

Translating Agda types to Haskell

Note: This section may contain outdated material!

When checking the type of COMPILED function f : A, the Agda type A is translated to a Haskell type TA and the
Haskell code Ef is checked against this type. The core of the translation on kinds K[[M]], types T[[M]] and expressions
E[[M]] is:

K[[ Set A ]] = *
K[[ x As ]] = undef
K[[ fn (x : A) B ]] = undef
K[[ Pi (x : A) B ]] = K[[ A ]] -> K[[ B ]]
K[[ k As ]] =

if COMPILED_TYPE k
then *
else undef

T[[ Set A ]] = Unit
T[[ x As ]] = x T[[ As ]]
T[[ fn (x : A) B ]] = undef
T[[ Pi (x : A) B ]] =

if x in fv B
then forall x . T[[ A ]] -> T[[ B ]]
else T[[ A ]] -> T[[ B ]]

T[[ k As ]] =
if COMPILED_TYPE k T
then T T[[ As ]]
else if COMPILED k E
then Unit
else undef

E[[ Set A ]] = unit
E[[ x As ]] = x E[[ As ]]
E[[ fn (x : A) B ]] = fn x . E[[ B ]]
E[[ Pi (x : A) B ]] = unit
E[[ k As ]] =

if COMPILED k E
then E E[[ As ]]
else runtime-error

The T[[ Pi (x : A) B ]] case is worth mentioning. Since the compiler doesn’t erase type arguments we can’t translate
(a : Set) → B to forall a. B — an argument of type Set will still be passed to a function of this type. Therefore, the
translated type is forall a. () → B where the type argument is assumed to have unit type. This is safe since we will
never actually look at the argument, and the compiler compiles types to ().
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Function Definitions

Introduction

A function is defined by first declaring its type followed by a number of equations called clauses. Each clause consists
of the function being defined applied to a number of patterns, followed by = and a term called the right-hand side. For
example:

not : Bool → Bool
not true = false
not false = true

Functions are allowed to call themselves recursively, for example:

twice : Nat → Nat
twice zero = zero
twice (suc n) = suc (suc (twice n))

General form

The general form for defining a function is

f : (x1 : A1) → ... → (x : A) → B
f p1 ... p = d
...
f q1 ... q = e

where f is a new identifier, p and q are patterns of type A, and d and e are expressions.

The declaration above gives the identifier f the type (x1 : A1) → ... → (x1 : A1) → B and f is
defined by the defining equations. Patterns are matched from top to bottom, i.e., the first pattern that matches the
actual parameters is the one that is used.

By default, Agda checks the following properties of a function definition:

• The patterns in the left-hand side of each clause should consist only of constructors and variables.

• No variable should occur more than once on the left-hand side of a single clause.

• The patterns of all clauses should together cover all possible inputs of the function.

• The function should be terminating on all possible inputs, see Termination Checking.

Special patterns

In addition to constructors consisting of constructors and variables, Agda supports two special kinds of patterns: dot
patterns and absurd patterns.

Dot patterns

A dot pattern (also called inaccessible pattern) can be used when the only type-correct value of the argument is
determined by the patterns given for the other arguments. The syntax for a dot pattern is .t.

As an example, consider the datatype Square defined as follows
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data Square : Nat → Set where
sq : (m : Nat) → Square (m * m)

Suppose we want to define a function root : (n : Nat) → Square n → Nat that takes as its argu-
ments a number n and a proof that it is a square, and returns the square root of that number. We can do so as follows:

root : (n : Nat) → Square n → Nat
root .(m * m) (sq m) = m

Notice that by matching on the argument of type Square n with the constructor sq : (m : Nat) →
Square (m * m), n is forced to be equal to m * m.

In general, when matching on an argument of type D i1 ... i with a constructor c : (x1 : A1) → ...
→ (x : A) → D j1 ... j, Agda will attempt to unify i1 ... i with j1 ... j. When the unifica-
tion algorithm instantiates a variable x with value t, the corresponding argument of the function can be replaced by
a dot pattern .t. Using a dot pattern is optional, but can help readability. The following are also legal definitions of
root:

Since Agda 2.4.2.4:

root1 : (n : Nat) → Square n → Nat
root1 _ (sq m) = m

Since Agda 2.5.2:

root2 : (n : Nat) → Square n → Nat
root2 n (sq m) = m

In the case of root2, n evaluates to m * m in the body of the function and is thus equivalent to

root3 : (n : Nat) → Square n → Nat
root3 _ (sq m) = let n = m * m in m

Absurd patterns

Absurd patterns can be used when none of the constructors for a particular argument would be valid. The syntax for
an absurd pattern is ().

As an example, if we have a datatype Even defined as follows

data Even : Nat → Set where
even-zero : Even zero
even-plus2 : {n : Nat} → Even n → Even (suc (suc n))

then we can define a function one-not-even : Even 1 → by using an absurd pattern:

one-not-even : Even 1 →
one-not-even ()

Note that if the left-hand side of a clause contains an absurd pattern, its right-hand side must be omitted.

In general, when matching on an argument of type D i1 ... i with an absurd pattern, Agda will attempt for
each constructor c : (x1 : A1) → ... → (x : A) → D j1 ... j of the datatype D to unify
i1 ... i with j1 ... j. The absurd pattern will only be accepted if all of these unifications end in a conflict.
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As-patterns

As-patterns (or @-patterns) can be used to name a pattern. The name has the same scope as normal pattern
variables (i.e. the right-hand side, where clause, and dot patterns). The name reduces to the value of the named
pattern. For example:

module _ {A : Set} (_<_ : A → A → Bool) where
merge : List A → List A → List A
merge xs [] = xs
merge [] ys = ys
merge xs@(x xs1) ys@(y ys1) =
if x < y then x merge xs1 ys

else y merge xs ys1

As-patterns are properly supported since Agda 2.5.2.

Case trees

Internally, Agda represents function definitions as case trees. For example, a function definition

max : Nat → Nat → Nat
max zero n = n
max m zero = m
max (suc m) (suc n) = suc (max m n)

will be represented internally as a case tree that looks like this:

max m n = case m of
zero -> n
suc m' -> case n of
zero -> suc m'
suc n' -> suc (max m' n')

Note that because Agda uses this representation of the function max the equation max m zero = m will not hold
by definition, but must be proven instead. Since 2.5.1 you can have Agda warn you when a situation like this occurs
by adding {-# OPTIONS --exact-split #-} at the top of your file.

Function Types

Function types are written (x : A) → B, or in the case of non-dependent functions simply A → B. For instance,
the type of the addition function for natural numbers is:

Nat → Nat → Nat

and the type of the addition function for vectors is:

(A : Set) → (n : Nat) → (u : Vec A n) → (v : Vec A n) → Vec A n

where Set is the type of sets and Vec A n is the type of vectors with n elements of type A. Arrows between
consecutive hypotheses of the form (x : A) may also be omitted, and (x : A) (y : A) may be shortened
to (x y : A):

(A : Set) (n : Nat)(u v : Vec A n) → Vec A n

32 Chapter 3. Language Reference



Agda Documentation, Release 2.5.2

Functions are constructed by lambda abstractions, which can be either typed or untyped. For instance, both expressions
below have type (A : Set) → A → A (the second expression checks against other types as well):

example1 = \ (A : Set)(x : A) → x
example2 = \ A x → x

You can also use the Unicode symbol 𝜆 (type “\lambda” in the Emacs Agda mode) instead of \\.

The application of a function f : (x : A) → B to an argument a : A is written f a and the type of this
is B[x := a].

Notational conventions

Function types:

prop1 : ((x : A) (y : B) → C) is-the-same-as ((x : A) → (y : B) → C)
prop2 : ((x y : A) → C) is-the-same-as ((x : A)(y : A) → C)
prop3 : (forall (x : A) → C) is-the-same-as ((x : A) → C)
prop4 : (forall x → C) is-the-same-as ((x : _) → C)
prop5 : (forall x y → C) is-the-same-as (forall x → forall y → C)

You can also use the Unicode symbol (type “\all” in the Emacs Agda mode) instead of forall.

Functional abstraction:

(\x y → e) is-the-same-as (\x → (\y → e))

Functional application:

(f a b) is-the-same-as ((f a) b)

Implicit Arguments

It is possible to omit terms that the type checker can figure out for itself, replacing them by _. If the type checker
cannot infer the value of an _ it will report an error. For instance, for the polymorphic identity function

id : (A : Set) → A → A

the first argument can be inferred from the type of the second argument, so we might write id _ zero for the
application of the identity function to zero.

We can even write this function application without the first argument. In that case we declare an implicit function
space:

id : {A : Set} → A → A

and then we can use the notation id zero.

Another example:

_==_ : {A : Set} → A → A → Set
subst : {A : Set} (C : A → Set) {x y : A} → x == y → C x → C y

Note how the first argument to _==_ is left implicit. Similarly, we may leave out the implicit arguments A, x, and
y in an application of subst. To give an implicit argument explicitly, enclose in curly braces. The following two
expressions are equivalent:
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x1 = subst C eq cx
x2 = subst {_} C {_} {_} eq cx

It is worth noting that implicit arguments are also inserted at the end of an application, if it is required by the type. For
example, in the following, y1 and y2 are equivalent.

y1 : a == b → C a → C b
y1 = subst C

y2 : a == b → C a → C b
y2 = subst C {_} {_}

Implicit arguments are inserted eagerly in left-hand sides so y3 and y4 are equivalent. An exception is when no type
signature is given, in which case no implicit argument insertion takes place. Thus in the definition of y5 there only
implicit is the A argument of subst.

y3 : {x y : A} → x == y → C x → C y
y3 = subst C

y4 : {x y : A} → x == y → C x → C y
y4 {x} {y} = subst C {_} {_}

y5 = subst C

It is also possible to write lambda abstractions with implicit arguments. For example, given id : (A : Set) →
A → A, we can define the identity function with implicit type argument as

id’ = 𝜆 {A} → id A

Implicit arguments can also be referred to by name, so if we want to give the expression e explicitly for y without
giving a value for x we can write

subst C {y = e} eq cx

When constructing implicit function spaces the implicit argument can be omitted, so both expressions below are valid
expressions of type {A : Set} → A → A:

z1 = 𝜆 {A} x → x
z2 = 𝜆 x → x

The (or forall) syntax for function types also has implicit variants:

: ( {x : A} → B) is-the-same-as ({x : A} → B)
: ( {x} → B) is-the-same-as ({x : _} → B)
: ( {x y} → B) is-the-same-as ( {x} → {y} → B)

There are no restrictions on when a function space can be implicit. Internally, explicit and implicit function spaces are
treated in the same way. This means that there are no guarantees that implicit arguments will be solved. When there
are unsolved implicit arguments the type checker will give an error message indicating which application contains
the unsolved arguments. The reason for this liberal approach to implicit arguments is that limiting the use of implicit
argument to the cases where we guarantee that they are solved rules out many useful cases in practice.
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Metavariables

Unification

Instance Arguments

• Usage

– Defining type classes

– Declaring instances

– Examples

• Instance resolution

Instance arguments are the Agda equivalent of Haskell type class constraints and can be used for many of the same
purposes. In Agda terms, they are implicit arguments that get solved by a special instance resolution algorithm, rather
than by the unification algorithm used for normal implicit arguments. In principle, an instance argument is resolved,
if a unique instance of the required type can be built from declared instances and the current context.

Usage

Instance arguments are enclosed in double curly braces {{ }}, or their unicode equivalent (U+2983 and U+2984,
which can be typed as \{{ and \}} in the Emacs mode). For instance, given a function _==_

_==_ : {A : Set} {{eqA : Eq A}} → A → A → Bool

for some suitable type Eq, you might define

elem : {A : Set} {{eqA : Eq A}} → A → List A → Bool
elem x (y xs) = x == y || elem x xs
elem x [] = false

Here the instance argument to _==_ is solved by the corresponding argument to elem. Just like ordinary implicit
arguments, instance arguments can be given explicitly. The above definition is equivalent to

elem : {A : Set} {{eqA : Eq A}} → A → List A → Bool
elem {{eqA}} x (y xs) = _==_ {{eqA}} x y || elem {{eqA}} x xs
elem x [] = false

A very useful function that exploits this is the function itwhich lets you apply instance resolution to solve an arbitrary
goal:

it : {a} {A : Set a} {{_ : A}} → A
it {{x}} = x

Note that instance arguments in types are always named, but the name can be _:

_==_ : {A : Set} → {{Eq A}} → A → A → Bool -- INVALID

_==_ : {A : Set} {{_ : Eq A}} → A → A → Bool -- VALID

3.11. Instance Arguments 35



Agda Documentation, Release 2.5.2

Defining type classes

The type of an instance argument must have the form {Γ} → C vs, where C is a bound variable or the name of a
data or record type, and {Γ} denotes an arbitrary number of (ordinary) implicit arguments (see dependent instances
below for an example where Γ is non-empty). Other than that there are no requirements on the type of an instance
argument. In particular, there is no special declaration to say that a type is a “type class”. Instead, Haskell-style type
classes are usually defined as record types. For instance,

record Monoid {a} (A : Set a) : Set a where
field
mempty : A
_<>_ : A → A → A

In order to make the fields of the record available as functions taking instance arguments you can use the special
module application

open Monoid {{...}} public

This will bring into scope

mempty : {a} {A : Set a} {{_ : Monoid A}} → A
_<>_ : {a} {A : Set a} {{_ : Monoid A}} → A → A → A

Superclass dependencies can be implemented using Instance fields.

See Module application and Record modules for details about how the module application is desugared. If defined by
hand, mempty would be

mempty : {a} {A : Set a} {{_ : Monoid A}} → A
mempty {{mon}} = Monoid.mempty mon

Although record types are a natural fit for Haskell-style type classes, you can use instance arguments with data types
to good effect. See the examples below.

Declaring instances

A seen above, instance arguments in the context are available when solving instance arguments, but you also need to
be able to define top-level instances for concrete types. This is done using the instance keyword, which starts a
block in which each definition is marked as an instance available for instance resolution. For example, an instance
Monoid (List A) can be defined as

instance
ListMonoid : {a} {A : Set a} → Monoid (List A)
ListMonoid = record { mempty = []; _<>_ = _++_ }

Or equivalently, using copatterns:

instance
ListMonoid : {a} {A : Set a} → Monoid (List A)
mempty {{ListMonoid}} = []
_<>_ {{ListMonoid}} xs ys = xs ++ ys

Top-level instances must target a named type (Monoid in this case), and cannot be declared for types in the context.

You can define local instances in let-expressions in the same way as a top-level instance. For example:
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mconcat : {a} {A : Set a} {{_ : Monoid A}} → List A → A
mconcat [] = mempty
mconcat (x xs) = x <> mconcat xs

sum : List Nat → Nat
sum xs =

let instance
NatMonoid : Monoid Nat
NatMonoid = record { mempty = 0; _<>_ = _+_ }

in mconcat xs

Instances can have instance arguments themselves, which will be filled in recursively during instance resolution. For
instance,

record Eq {a} (A : Set a) : Set a where
field
_==_ : A → A → Bool

open Eq {{...}} public

instance
eqList : {a} {A : Set a} {{_ : Eq A}} → Eq (List A)
_==_ {{eqList}} [] [] = true
_==_ {{eqList}} (x xs) (y ys) = x == y && xs == ys
_==_ {{eqList}} _ _ = false

eqNat : Eq Nat
_==_ {{eqNat}} = natEquals

ex : Bool
ex = (1 2 3 []) == (1 2 []) -- false

Note the two calls to _==_ in the right-hand side of the second clause. The first uses the Eq A instance and the second
uses a recursive call to eqList. In the example ex, instance resolution, needing a value of type Eq (List Nat),
will try to use the eqList instance and find that it needs an instance argument of type Eq Nat, it will then solve
that with eqNat and return the solution eqList {{eqNat}}.

Note: At the moment there is no termination check on instances, so it is possible to construct non-sensical instances
like loop : {a} {A : Set a} {{_ : Eq A}} → Eq A. To prevent looping in cases like this, the
search depth of instance search is limited, and once the maximum depth is reached, a type error will be thrown. You
can set the maximum depth using the --instance-search-depth flag.

Constructor instances

Although instance arguments are most commonly used for record types, mimicking Haskell-style type classes, they
can also be used with data types. In this case you often want the constructors to be instances, which is achieved by
declaring them inside an instance block. Typically arguments to constructors are not instance arguments, so during
instance resolution explicit arguments are treated as instance arguments. See instance resolution below for the details.

A simple example of a constructor that can be made an instance is the reflexivity constructor of the equality type:

data __ {a} {A : Set a} (x : A) : A → Set a where
instance refl : x x
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This allows trivial equality proofs to be inferred by instance resolution, which can make working with functions that
have preconditions less of a burden. As an example, here is how one could use this to define a function that takes a
natural number and gives back a Fin n (the type of naturals smaller than n):

data Fin : Nat → Set where
zero : {n} → Fin (suc n)
suc : {n} → Fin n → Fin (suc n)

mkFin : {n} (m : Nat) {{_ : suc m - n 0}} → Fin n
mkFin {zero} m {{}}
mkFin {suc n} zero = zero
mkFin {suc n} (suc m) = suc (mkFin m)

five : Fin 6
five = mkFin 5 -- OK

In the first clause of mkFin we use an absurd pattern to discharge the impossible assumption suc m 0. See the
next section for another example of constructor instances.

Record fields can also be declared instances, with the effect that the corresponding projection function is considered a
top-level instance.

Examples

Proof search

Instance arguments are useful not only for Haskell-style type classes, but they can also be used to get some limited
form of proof search (which, to be fair, is also true for Haskell type classes). Consider the following type, which
models a proof that a particular element is present in a list as the index at which the element appears:

infix 4 __
data __ {A : Set} (x : A) : List A → Set where

instance
zero : {xs} → x x xs
suc : {y xs} → x xs → x y xs

Here we have declared the constructors of __ to be instances, which allows instance resolution to find proofs for
concrete cases. For example,

ex1 : 1 + 2 1 2 3 4 []
ex1 = it -- computes to suc (suc zero)

ex2 : {A : Set} (x y : A) (xs : List A) → x y y x xs
ex2 x y xs = it -- suc (suc zero)

ex3 : {A : Set} (x y : A) (xs : List A) {{i : x xs}} → x y y xs
ex3 x y xs = it -- suc (suc i)

It will fail, however, if there are more than one solution, since instance arguments must be unique. For example,

fail1 : 1 1 2 1 []
fail1 = it -- ambiguous: zero or suc (suc zero)

fail2 : {A : Set} (x y : A) (xs : List A) {{i : x xs}} → x y x xs
fail2 x y xs = it -- suc zero or suc (suc i)
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Dependent instances

Consider a variant on the Eq class where the equality function produces a proof in the case the arguments are equal:

record Eq {a} (A : Set a) : Set a where
field
_==_ : (x y : A) → Maybe (x y)

open Eq {{...}} public

A simple boolean-valued equality function is problematic for types with dependencies, like the Σ-type

data Σ {a b} (A : Set a) (B : A → Set b) : Set (a b) where
_,_ : (x : A) → B x → Σ A B

since given two pairs x , y and x1 , y1, the types of the second components y and y1 can be completely different
and not admit an equality test. Only when x and x1 are really equal can we hope to compare y and y1. Having the
equality function return a proof means that we are guaranteed that when x and x1 compare equal, they really are equal,
and comparing y and y1 makes sense.

An Eq instance for Σ can be defined as follows:

instance
eqΣ : {a b} {A : Set a} {B : A → Set b} {{_ : Eq A}} {{_ : {x} → Eq (B x)}} →

→˓Eq (Σ A B)
_==_ {{eqΣ}} (x , y) (x1 , y1) with x == x1
_==_ {{eqΣ}} (x , y) (x1 , y1) | nothing = nothing
_==_ {{eqΣ}} (x , y) (.x , y1) | just refl with y == y1
_==_ {{eqΣ}} (x , y) (.x , y1) | just refl | nothing = nothing
_==_ {{eqΣ}} (x , y) (.x , .y) | just refl | just refl = just refl

Note that the instance argument for B states that there should be an Eq instance for B x, for any x : A. The
argument x must be implicit, indicating that it needs to be inferred by unification whenever the B instance is used. See
instance resolution below for more details.

Instance resolution

Given a goal that should be solved using instance resolution we proceed in the following four stages:

Verify the goal First we check that the goal is not already solved. This can happen if there are unification constraints
determining the value, or if it is of singleton record type and thus solved by eta-expansion.

Next we check that the goal type has the right shape to be solved by instance resolution. It should be of the
form {Γ} → C vs, where the target type C is a variable from the context or the name of a data or record type,
and {Γ} denotes a telescope of implicit arguments. If this is not the case instance resolution fails with an error
message1.

Finally we have to check that there are no unconstrained metavariables in vs. A metavariable 𝛼 is considered
constrained if it appears in an argument that is determined by the type of some later argument, or if there is an
existing constraint of the form 𝛼 us = C vs, where C inert (i.e. a data or type constructor). For example, 𝛼 is
constrained in T 𝛼 xs if T : (n : Nat) → Vec A n → Set, since the type of the second argument
of T determines the value of the first argument. The reason for this restriction is that instance resolution risks
looping in the presence of unconstrained metavariables. For example, suppose the goal is Eq 𝛼 for some
metavariable 𝛼. Instance resolution would decide that the eqList instance was applicable if setting 𝛼 :=
List 𝛽 for a fresh metavariable 𝛽, and then proceed to search for an instance of Eq 𝛽.

1 Instance goal verification is buggy at the moment. See issue #1322.
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Find candidates In the second stage we compute a set of candidates. Let-bound variables and top-level definitions in
scope are candidates if they are defined in an instance block. Lambda-bound variables, i.e. variables bound
in lambdas, function types, left-hand sides, or module parameters, are candidates if they are bound as instance
arguments using {{ }}. Only candidates that compute something of type C us, where C is the target type
computed in the previous stage, are considered.

Check the candidates We attempt to use each candidate in turn to build an instance of the goal type {Γ} → C vs.
First we extend the current context by Γ. Then, given a candidate c : ∆ → A we generate fresh metavari-
ables 𝛼s : ∆ for the arguments of c, with ordinary metavariables for implicit arguments, and instance
metavariables, solved by a recursive call to instance resolution, for explicit arguments and instance arguments.

Next we unify A[∆ := 𝛼s] with C vs and apply instance resolution to the instance metavariables in 𝛼s.
Both unification and instance resolution have three possible outcomes: yes, no, or maybe. In case we get a no
answer from any of them, the current candidate is discarded, otherwise we return the potential solution 𝜆 {Γ}
→ c 𝛼s.

Compute the result From the previous stage we get a list of potential solutions. If the list is empty we fail with an
error saying that no instance for C vs could be found (no). If there is a single solution we use it to solve the
goal (yes), and if there are multiple solutions we check if they are all equal. If they are, we solve the goal with
one of them (yes), but if they are not, we postpone instance resolution (maybe), hoping that some of the maybes
will turn into nos once we know more about the involved metavariables.

If there are left-over instance problems at the end of type checking, the corresponding metavariables are printed
in the Emacs status buffer together with their types and source location. The candidates that gave rise to potential
solutions can be printed with the show constraints command (C-c C-=).

Irrelevance

Note: This is a stub.

Lambda Abstraction

Pattern matching lambda

Anonymous pattern matching functions can be defined using the syntax:

\ { p11 .. p1n -> e1 ; ... ; pm1 .. pmn -> em }

(where, as usual, \ and -> can be replaced by 𝜆 and →). Internally this is translated into a function definition of the
following form:

.extlam p11 .. p1n = e1

...

.extlam pm1 .. pmn = em

This means that anonymous pattern matching functions are generative. For instance, refl will not be accepted as an
inhabitant of the type

(𝜆 { true → true ; false → false })
(𝜆 { true → true ; false → false })
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because this is equivalent to extlam1 extlam2 for some distinct fresh names extlam1 and extlam2. Cur-
rently the where and with constructions are not allowed in (the top-level clauses of) anonymous pattern matching
functions.

Examples:

and : Bool → Bool → Bool
and = 𝜆 { true x → x ; false _ → false }

xor : Bool → Bool → Bool
xor = 𝜆 { true true → false

; false false → false
; _ _ → true
}

fst : {A : Set} {B : A → Set} → Σ A B → A
fst = 𝜆 { (a , b) → a }

snd : {A : Set} {B : A → Set} (p : Σ A B) → B (fst p)
snd = 𝜆 { (a , b) → b }

Local Definitions: let and where

There are two ways of declaring local definitions in Agda:

• let-expressions

• where-blocks

let-expressions

A let-expression defines an abbreviation. In other words, the expression that we define in a let-expression can neither
be recursive nor defined by pattern matching.

Example:

f : Nat
f = let h : Nat → Nat

h m = suc (suc m)
in h zero + h (suc zero)

let-expressions have the general form

let f : A1 → ... → A → A
f x1 ... x = e

in e’

After type-checking, the meaning of this is simply the substitution e’[f := 𝜆 x1 ... x → e]. Since Agda
substitutes away let-bindings, they do not show up in terms Agda prints, nor in the goal display in interactive mode.

where-blocks

where-blocks are much more powerful than let-expressions, as they support arbitrary local definitions. A where can
be attached to any function clause.
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where-blocks have the general form

clause
where
decls

or

clause
module M where
decls

A simple instance is

g ps = e
where
f : A1 → ... → A → A
f p11 ... p1= e1
...
...
f p1 ... p= e

Here, the p are patterns of the corresponding types and e is an expression that can contain occurrences of f. Functions
defined with a where-expression must follow the rules for general definitions by pattern matching.

Example:

reverse : {A : Set} → List A → List A
reverse {A} xs = rev-append xs []
where
rev-append : List A → List A → List A
rev-append [] ys = ys
rev-append (x xs) ys = rev-append xs (x ys)

Variable scope

The pattern variables of the parent clause of the where-block are in scope; in the previous example, these are A and
xs. The variables bound by the type signature of the parent clause are not in scope. This is why we added the hidden
binder {A}.

Scope of the local declarations

The where-definitions are not visible outside of the clause that owns these definitions (the parent clause). If the
where-block is given a name (form module M where), then the definitions are available as qualified by M, since
module M is visible even outside of the parent clause. The special form of an anonymous module (module _
where) makes the definitions visible outside of the parent clause without qualification.

If the parent function of a named where-block (form module M where) is private, then module M is also
private. However, the declarations inside M are not private unless declared so explicitly. Thus, the following
example scope checks fine:

module Parent1 where
private
parent = local
module Private where
local = Set
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module Public = Private

test1 = Parent1.Public.local

Likewise, a private declaration for a parent function does not affect the privacy of local functions defined under a
module _ where-block:

module Parent2 where
private
parent = local
module _ where
local = Set

test2 = Parent2.local

They can be declared private explicitly, though:

module Parent3 where
parent = local
module _ where
private

local = Set

Now, Parent3.local is not in scope.

A private declaration for the parent of an ordinary where-block has no effect on the local definitions, of course.
They are not even in scope.

Proving properties

Sometimes one needs to refer to local definitions in proofs about the parent function. In this case, the module
where variant is preferable.

reverse : {A : Set} → List A → List A
reverse {A} xs = rev-append xs []

module Rev where
rev-append : List A → List A → List A
rev-append [] ys = ys
rev-append (x :: xs) ys = rev-append xs (x :: ys)

This gives us access to the local function as

Rev.rev-append : {A : Set} (xs : List A) → List A → List A → List A

Alternatively, we can define local functions as private to the module we are working in; hence, they will not be visible
in any module that imports this module but it will allow us to prove some properties about them.

private
rev-append : {A : Set} → List A → List A → List A
rev-append [] ys = ys
rev-append (x xs) ys = rev-append xs (x ys)

reverse' : {A : Set} → List A → List A
reverse' xs = rev-append xs []
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More Examples (for Beginners)

Using a let-expression

tw-map : {A : Set} → List A → List (List A)
tw-map {A} xs = let twice : List A → List A

twice xs = xs ++ xs
in map (\ x → twice [ x ]) xs

Same definition but with less type information

tw-map' : {A : Set} → List A → List (List A)
tw-map' {A} xs = let twice : _

twice xs = xs ++ xs
in map (\ x → twice [ x ]) xs

Same definition but with a where-expression

tw-map'' : {A : Set} → List A → List (List A)
tw-map'' {A} xs = map (\ x → twice [ x ]) xs

where twice : List A → List A
twice xs = xs ++ xs

Even less type information using let

f : Nat → List Nat
f zero = [ zero ]
f (suc n) = let sing = [ suc n ]

in sing ++ f n

Same definition using where

f' : Nat → List Nat
f' zero = [ zero ]
f' (suc n) = sing ++ f' n

where sing = [ suc n ]

More than one definition in a let:

h : Nat → Nat
h n = let add2 : Nat

add2 = suc (suc n)

twice : Nat → Nat
twice m = m * m

in twice add2

More than one definition in a where:

g : Nat → Nat
g n = fib n + fact n
where fib : Nat → Nat

fib zero = suc zero
fib (suc zero) = suc zero
fib (suc (suc n)) = fib (suc n) + fib n

fact : Nat → Nat
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fact zero = suc zero
fact (suc n) = suc n * fact n

Combining let and where:

k : Nat → Nat
k n = let aux : Nat → Nat

aux m = pred (g m) + h m
in aux (pred n)

where pred : Nat → Nat
pred zero = zero
pred (suc m) = m

Lexical Structure

Agda code is written in UTF-8 encoded plain text files with the extension .agda. Most unicode characters can be
used in identifiers and whitespace is important, see Names and Layout below.

Tokens

Keywords and special symbols

Most non-whitespace unicode can be used as part of an Agda name, but there are two kinds of exceptions:

special symbols Characters with special meaning that cannot appear at all in a name. These are .;{}()@".

keywords Reserved words that cannot appear as a name part, but can appear in a name together with other characters.

= | ->→ : ? \ 𝜆 .. ... abstract codata coinductive constructor data eta-equality field
forall hiding import in inductive infix infixl infixr instance let macro module
mutual no-eta-equality open overlap pattern postulate primitive private public
quote quoteContext quoteGoal quoteTerm record renaming rewrite Set syntax tactic un-
quote unquoteDecl unquoteDef using where with

The Set keyword can appear with a number suffix, optionally subscripted (see Universe Levels). For instance
Set42 and Set42 are both keywords.

Names

A qualified name is a non-empty sequence of names separated by dots (.). A name is an alternating sequence of
name parts and underscores (_), containing at least one name part. A name part is a non-empty sequence of unicode
characters, excluding whitespace, _, and special symbols. A name part cannot be one of the keywords above, and
cannot start with a single quote, ' (which are used for character literals, see Literals below).

Examples

• Valid: data?, ::, if_then_else_, 0b, ___, x=y

• Invalid: data_?, foo__bar, _, a;b, [_.._]

The underscores in a name indicate where the arguments go when the name is used as an operator. For instance, the
application _+_ 1 2 can be written as 1 + 2. See Mixfix Operators for more information. Since most sequences of
characters are valid names, whitespace is more important than in other languages. In the example above the whitespace
around + is required, since 1+2 is a valid name.
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Qualified names are used to refer to entities defined in other modules. For instance Prelude.Bool.true refers to
the name true defined in the module Prelude.Bool. See Module System for more information.

Literals

There are four types of literal values: integers, floats, characters, and strings. See Built-ins for the corresponding types,
and Literal Overloading for how to support literals for user-defined types.

Integers Integer values in decimal or hexadecimal (prefixed by 0x) notation. Non-negative numbers map by default
to built-in natural numbers, but can be overloaded. Negative numbers have no default interpretation and can
only be used through overloading.

Examples: 123, 0xF0F080, -42, -0xF

Floats Floating point numbers in the standard notation (with square brackets denoting optional parts):

float ::= [-] decimal . decimal [exponent]
| [-] decimal exponent

exponent ::= (e | E) [+ | -] decimal

These map to built-in floats and cannot be overloaded.

Examples: 1.0, -5.0e+12, 1.01e-16, 4.2E9, 50e3.

Characters Character literals are enclosed in single quotes ('). They can be a single (unicode) character, other than '
or \, or an escaped character. Escaped characters starts with a backslash \ followed by an escape code. Escape
codes are natural numbers in decimal or hexadecimal (prefixed by x) between 0 and 0x10ffff (1114111),
or one of the following special escape codes:

Code ASCII Code ASCII Code ASCII Code ASCII
a 7 b 8 t 9 n 10
v 11 f 12 \ \ ' '
" " NUL 0 SOH 1 STX 2
ETX 3 EOT 4 ENQ 5 ACK 6
BEL 7 BS 8 HT 9 LF 10
VT 11 FF 12 CR 13 SO 14
SI 15 DLE 16 DC1 17 DC2 18
DC3 19 DC4 20 NAK 21 SYN 22
ETB 23 CAN 24 EM 25 SUB 26
ESC 27 FS 28 GS 29 RS 30
US 31 SP 32 DEL 127

Character literals map to the built-in character type and cannot be overloaded.

Examples: 'A', '', '\x2200', '\ESC', '\32', '\n', '\'', '"'.

Strings String literals are sequences of, possibly escaped, characters enclosed in double quotes ". They follow the
same rules as character literals except that double quotes " need to be escaped rather than single quotes '.
String literals map to the built-in string type by default, but can be overloaded.

Example: " \"\"\n".

Holes

Holes are an integral part of the interactive development supported by the Emacs mode. Any text enclosed in {! and
!} is a hole and may contain nested holes. A hole with no contents can be written ?. There are a number of Emacs
commands that operate on the contents of a hole. The type checker ignores the contents of a hole and treats it as an
unknown (see Implicit Arguments).
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Example: {! f {!x!} 5 !}

Comments

Single-line comments are written with a double dash -- followed by arbitrary text. Multi-line comments are enclosed
in {- and -} and can be nested. Comments cannot appear in string literals.

Example:

{- Here is a {- nested -}
comment -}

s : String --line comment {-
s = "{- not a comment -}"

Pragmas

Pragmas are special comments enclosed in {-# and #-} that have special meaning to the system. See Pragmas for a
full list of pragmas.

Layout

Agda is layout sensitive using similar rules as Haskell, with the exception that layout is mandatory: you cannot use
explicit {, } and ; to avoid it.

A layout block contains a sequence of statements and is started by one of the layout keywords:

abstract field instance let macro mutual postulate primitive private where

The first token after the layout keyword decides the indentation of the block. Any token indented more than this is
part of the previous statement, a token at the same level starts a new statement, and a token indented less lies outside
the block.

data Nat : Set where -- starts a layout block
-- comments are not tokens

zero : Nat -- statement 1
suc : Nat → -- statement 2

Nat -- also statement 2

one : Nat -- outside the layout block
one = suc zero

Note that the indentation of the layout keyword does not matter.

An Agda file contains one top-level layout block, with the special rule that the contents of the top-level module need
not be indented.

module Example where
NotIndented : Set1
NotIndented = Set
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Literate Agda

Agda supports literate programming where everything in a file is a comment unless enclosed in \begin{code},
\end{code}. Literate Agda files have the extension .lagda instead of .agda. The main use case for literate
Agda is to generate LaTeX documents from Agda code. See Generating LaTeX for more information.

\documentclass{article}
% some preable stuff
\begin{document}
Introduction usually goes here
\begin{code}
module MyPaper where

open import Prelude
five : Nat
five = 2 + 3

\end{code}
Now, conclusions!
\end{document}

Literal Overloading

Natural numbers

By default natural number literals are mapped to the built-in natural number type. This can be changed with the
FROMNAT built-in, which binds to a function accepting a natural number:

{-# BUILTIN FROMNAT fromNat #-}

This causes natural number literals n to be desugared to fromNat n. Note that the desugaring happens before
implicit argument are inserted so fromNat can have any number of implicit or instance arguments. This can be
exploited to support overloaded literals by defining a type class containing fromNat:

{-# BUILTIN FROMNAT fromNat #-}

This definition requires that any natural number can be mapped into the given type, so it won’t work for types like
Fin n. This can be solved by refining the Number class with an additional constraint:

record Number {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat → Set a
fromNat : (n : Nat) {{_ : Constraint n}} → A

open Number {{...}} public using (fromNat)

{-# BUILTIN FROMNAT fromNat #-}

This is the definition used in Agda.Builtin.FromNat. A Number instance for Fin n can then be defined as
follows:

data IsTrue : Bool → Set where
itis : IsTrue true

instance
indeed : IsTrue true
indeed = itis
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_<?_ : Nat → Nat → Bool
zero <? zero = false
zero <? suc y = true
suc x <? zero = false
suc x <? suc y = x <? y

natToFin : {n} (m : Nat) {{_ : IsTrue (m <? n)}} → Fin n
natToFin {zero} zero {{()}}
natToFin {zero} (suc m) {{()}}
natToFin {suc n} zero {{itis}} = zero
natToFin {suc n} (suc m) {{t}} = suc (natToFin m)

instance
NumFin : {n} → Number (Fin n)
Number.Constraint (NumFin {n}) k = IsTrue (k <? n)
Number.fromNat NumFin k = natToFin k

Negative numbers

Negative integer literals have no default mapping and can only be used through the FROMNEG built-in. Binding this to
a function fromNeg causes negative integer literals -n to be desugared to fromNeg n, where n is a built-in natural
number. From Agda.Builtin.FromNeg:

record Negative {a} (A : Set a) : Set (lsuc a) where
field
Constraint : Nat → Set a
fromNeg : (n : Nat) {{_ : Constraint n}} → A

open Negative {{...}} public using (fromNeg)
{-# BUILTIN FROMNEG fromNeg #-}

Strings

String literals are overloaded with the FROMSTRING built-in, which works just like FROMNAT. If it is not bound
string literals map to built-in strings. From Agda.Builtin.FromString:

record IsString {a} (A : Set a) : Set (lsuc a) where
field
Constraint : String → Set a
fromString : (s : String) {{_ : Constraint s}} → A

open IsString {{...}} public using (fromString)
{-# BUILTIN FROMSTRING fromString #-}

Other types

Currently only integer and string literals can be overloaded.
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Mixfix Operators

A name containing one or more name parts and one or more _ can be used as an operator where the arguments go in
place of the _. For instance, an application of the name if_then_else_ to arguments x, y, and z can be written
either as a normal application if_then_else_ x y z or as an operator application if x then y else z.

Examples:

_and_ : Bool → Bool → Bool
true and x = x
false and _ = false

if_then_else_ : {A : Set} → Bool → A → A → A
if true then x else y = x
if false then x else y = y

__ : Bool → Bool → Bool
true b = b
false _ = true

Precedence

Consider the expression true and false false. Depending on which of _and_ and __ has more prece-
dence, it can either be read as (false and true) false = true, or as false and (true false)
= true.

Each operator is associated to a precedence, which is an integer (can be negative!). The default precedence for an
operator is 20.

If we give _and_ more precedence than __, then we will get the first result:

infix 30 _and_
-- infix 20 __ (default)

p-and : {x y z : Bool} → x and y z (x and y) z
p-and = refl

e-and : false and true false true
e-and = refl

But, if we declare a new operator _and’_ and give it less precedence than __, then we will get the second result:

_and’_ : Bool → Bool → Bool
_and’_ = _and_
infix 15 _and’_
-- infix 20 __ (default)

p- : {x y z : Bool} → x and’ y z x and’ (y z)
p- = refl

e- : false and’ true false false
e- = refl
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Associativity

Consider the expression true false false. Depending on whether __ is associates to the left or to the right,
it can be read as (false true) false = false, or false (true false) = true, respectively.

If we declare an operator __ as infixr, it will associate to the right:

infixr 20 __

p-right : {x y z : Bool} → x y z x (y z)
p-right = refl

e-right : false true false true
e-right = refl

If we declare an operator _’_ as infixl, it will associate to the left:

infixl 20 _’_

_’_ : Bool → Bool → Bool
_’_ = __

p-left : {x y z : Bool} → x ’ y ’ z (x ’ y) ’ z
p-left = refl

e-left : false ’ true ’ false false
e-left = refl

Ambiguity and Scope

If you have not yet declared the fixity of an operator, Agda will complain if you try to use ambiguously:

e-ambiguous : Bool
e-ambiguous = true true true

Could not parse the application true true true
Operators used in the grammar:

(infix operator, level 20)

Fixity declarations may appear anywhere in a module that other declarations may appear. They then apply to the entire
scope in which they appear (i.e. before and after, but not outside).

Module System

Module application

Anonymous modules

Basics

First let us introduce some terminology. A definition is a syntactic construction defining an entity such as a function or
a datatype. A name is a string used to identify definitions. The same definition can have many names and at different
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points in the program it will have different names. It may also be the case that two definitions have the same name. In
this case there will be an error if the name is used.

The main purpose of the module system is to structure the way names are used in a program. This is done by
organising the program in an hierarchical structure of modules where each module contains a number of definitions
and submodules. For instance,

module Main where

module B where
f : Nat → Nat
f n = suc n

g : Nat → Nat → Nat
g n m = m

Note that we use indentation to indicate which definitions are part of a module. In the example f is in the module
Main.B and g is in Main. How to refer to a particular definition is determined by where it is located in the module
hierarchy. Definitions from an enclosing module are referred to by their given names as seen in the type of f above.
To access a definition from outside its defining module a qualified name has to be used.

module Main2 where

module B where
f : Nat → Nat
f n = suc n

ff : Nat → Nat
ff x = B.f (B.f x)

To be able to use the short names for definitions in a module the module has to be opened.

module Main3 where

module B where
f : Nat → Nat
f n = suc n

open B

ff : Nat → Nat
ff x = f (f x)

If A.qname refers to a definition d then after open A, qname will also refer to d. Note that qname can itself be a
qualified name. Opening a module only introduces new names for a definition, it never removes the old names. The
policy is to allow the introduction of ambiguous names, but give an error if an ambiguous name is used.

Modules can also be opened within a local scope by putting the open B within a where clause:

ff1 : Nat → Nat
ff1 x = f (f x) where open B

Private definitions

To make a definition inaccessible outside its defining module it can be declared private. A private definition is treated
as a normal definition inside the module that defines it, but outside the module the definition has no name. In a depen-
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dently type setting there are some problems with private definitions—since the type checker performs computations,
private names might show up in goals and error messages. Consider the following (contrived) example

module Main4 where
module A where

private
IsZero’ : Nat → Set
IsZero’ zero =
IsZero’ (suc n) =

IsZero : Nat → Set
IsZero n = IsZero’ n

open A
prf : (n : Nat) → IsZero n
prf n = {!!}

The type of the goal ?0 is IsZero n which normalises to IsZero’ n. The question is how to display this normal form
to the user. At the point of ?0 there is no name for IsZero’. One option could be try to fold the term and print IsZero
n. This is a very hard problem in general, so rather than trying to do this we make it clear to the user that IsZero’ is
something that is not in scope and print the goal as .Main.A.IsZero’ n. The leading dot indicates that the entity is not
in scope. The same technique is used for definitions that only have ambiguous names.

In effect using private definitions means that from the user’s perspective we do not have subject reduction. This is just
an illusion, however—the type checker has full access to all definitions.

Name modifiers

An alternative to making definitions private is to exert finer control over what names are introduced when opening a
module. This is done by qualifying an open statement with one or more of the modifiers using, hiding, or renaming.
You can combine both using and hiding with renaming, but not with each other. The effect of

open A using (xs) renaming (ys to zs)

is to introduce the names xs and zs where xs refers to the same definition as A.xs and zs refers to A.ys. Note that if xs
and ys overlap there will be two names introduced for the same definition. We do not permit xs and zs to overlap. The
other forms of opening are defined in terms of this one. Let A denote all the (public) names in A. Then

open A renaming (ys to zs)
== open A hiding () renaming (ys to zs)

open A hiding (xs) renaming (ys to zs)
== open A using (A ; xs ; ys) renaming (ys to zs)

An omitted renaming modifier is equivalent to an empty renaming.

Re-exporting names

A useful feature is the ability to re-export names from another module. For instance, one may want to create a module
to collect the definitions from several other modules. This is achieved by qualifying the open statement with the public
keyword:

module Example where
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module Nat1 where

data Nat1 : Set where
zero : Nat1
suc : Nat1 → Nat1

module Bool1 where

data Bool1 : Set where
true false : Bool1

module Prelude where

open Nat1 public
open Bool1 public

isZero : Nat1 → Bool1
isZero zero = true
isZero (suc _) = false

The module Prelude above exports the names Nat, zero, Bool, etc., in addition to isZero.

Parameterised modules

So far, the module system features discussed have dealt solely with scope manipulation. We now turn our attention to
some more advanced features.

It is sometimes useful to be able to work temporarily in a given signature. For instance, when defining functions for
sorting lists it is convenient to assume a set of list elements A and an ordering over A. In Coq this can be done in two
ways: using a functor, which is essentially a function between modules, or using a section. A section allows you to
abstract some arguments from several definitions at once. We introduce parameterised modules analogous to sections
in Coq. When declaring a module you can give a telescope of module parameters which are abstracted from all the
definitions in the module. For instance, a simple implementation of a sorting function looks like this:

module Sort (A : Set)(__ : A → A → Bool) where
insert : A → List A → List A
insert x [] = x []
insert x (y ys) with x y
insert x (y ys) | true = x y ys
insert x (y ys) | false = y insert x ys

sort : List A → List A
sort [] = []
sort (x xs) = insert x (sort xs)

As mentioned parametrising a module has the effect of abstracting the parameters over the definitions in the module,
so outside the Sort module we have

Sort.insert : (A : Set)(__ : A → A → Bool) →
A → List A → List A

Sort.sort : (A : Set)(__ : A → A → Bool) →
List A → List A

For function definitions, explicit module parameter become explicit arguments to the abstracted function, and implicit
parameters become implicit arguments. For constructors, however, the parameters are always implicit arguments. This
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is a consequence of the fact that module parameters are turned into datatype parameters, and the datatype parameters
are implicit arguments to the constructors. It also happens to be the reasonable thing to do.

Something which you cannot do in Coq is to apply a section to its arguments. We allow this through the module
application statement. In our example:

module SortNat = Sort Nat leqNat

This will define a new module SortNat as follows

module SortNat where
insert : Nat → List Nat → List Nat
insert = Sort.insert Nat leqNat

sort : List Nat → List Nat
sort = Sort.sort Nat leqNat

The new module can also be parameterised, and you can use name modifiers to control what definitions from the
original module are applied and what names they have in the new module. The general form of a module application
is

module M1 Δ = M2 terms modifiers

A common pattern is to apply a module to its arguments and then open the resulting module. To simplify this we
introduce the short-hand

open module M1 Δ = M2 terms [public] mods

for

module M1 Δ = M2 terms mods
open M1 [public]

Splitting a program over multiple files

When building large programs it is crucial to be able to split the program over multiple files and to not have to type
check and compile all the files for every change. The module system offers a structured way to do this. We define
a program to be a collection of modules, each module being defined in a separate file. To gain access to a module
defined in a different file you can import the module:

import M

In order to implement this we must be able to find the file in which a module is defined. To do this we require that the
top-level module A.B.C is defined in the file C.agda in the directory A/B/. One could imagine instead to give a file
name to the import statement, but this would mean cluttering the program with details about the file system which is
not very nice.

When importing a module M the module and its contents is brought into scope as if the module had been defined in
the current file. In order to get access to the unqualified names of the module contents it has to be opened. Similarly
to module application we introduce the short-hand

open import M

for
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import M
open M

Sometimes the name of an imported module clashes with a local module. In this case it is possible to import the
module under a different name.

import M as M’

It is also possible to attach modifiers to import statements, limiting or changing what names are visible from inside the
module.

Datatype modules

When you define a datatype it also defines a module so constructors can now be referred to qualified by their data type.
For instance, given:

module DatatypeModules where

data Nat2 : Set where
zero : Nat2
suc : Nat2 → Nat2

data Fin : Nat2 → Set where
zero : {n} → Fin (suc n)
suc : {n} → Fin n → Fin (suc n)

you can refer to the constructors unambiguously as Nat2.zero, Nat2.suc, Fin.zero, and Fin.suc (Nat2 and Fin are
modules containing the respective constructors). Example:

inj : (n m : Nat2) → Nat2.suc n suc m → n m
inj .m m refl = refl

Previously you had to write something like

inj1 : (n m : Nat2) → __ {A = Nat2} (suc n) (suc m) → n m
inj1 .m m refl = refl

to make the type checker able to figure out that you wanted the natural number suc in this case.

Record update syntax

Assume that we have a record type and a corresponding value:

record MyRecord : Set where
field
a b c : Nat

old : MyRecord
old = record { a = 1; b = 2; c = 3 }

Then we can update (some of) the record value’s fields in the following way:

new : MyRecord
new = record old { a = 0; c = 5 }
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Here new normalises to record { a = 0; b = 2; c = 5 }. Any expression yielding a value of type MyRecord can be used
instead of old.

Record updating is not allowed to change types: the resulting value must have the same type as the original one,
including the record parameters. Thus, the type of a record update can be inferred if the type of the original record can
be inferred.

The record update syntax is expanded before type checking. When the expression

record old { upd-fields }

is checked against a record type R, it is expanded to

let r = old in record { new-fields }

where old is required to have type R and new-fields is defined as follows: for each field x in R,

• if x = e is contained in upd-fields then x = e is included in new-fields, and otherwise

• if x is an explicit field then x = R.x r is included in new-fields, and

• if x is an implicit or instance field, then it is omitted from new-fields.

(Instance arguments are explained below.) The reason for treating implicit and instance fields specially is to allow
code like the following:

data Vec (A : Set) : Nat → Set where
[] : Vec A zero
__ : {n} → A → Vec A n → Vec A (suc n)

record R : Set where
field
{length} : Nat
vec : Vec Nat length
-- More fields ...

xs : R
xs = record { vec = 0 1 2 [] }

ys = record xs { vec = 0 [] }

Without the special treatment the last expression would need to include a new binding for length (for instance “length
= _”).

Mutual Recursion

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function before their
definitions:

f : A
g : B[f]
f = a[f, g]
g = b[f, g].

You can mix arbitrary declarations, such as modules and postulates, with mutually recursive definitions. For data types
and records the following syntax is used to separate the declaration from the definition:
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-- Declaration.
data Vec (A : Set) : Nat → Set -- Note the absence of ‘where’.

-- Definition.
data Vec A where

[] : Vec A zero
_::_ : {n : Nat} → A → Vec A n → Vec A (suc n)

-- Declaration.
record Sigma (A : Set) (B : A → Set) : Set

-- Definition.
record Sigma A B where

constructor _,_
field fst : A

snd : B fst

When making separated declarations/definitions private or abstract you should attach the private keyword to the
declaration and the abstract keyword to the definition. For instance, a private, abstract function can be defined as

private
f : A

abstract
f = e

Old Syntax

Note: You are advised to avoid using this old syntax if possible, but the old syntax is still supported.

Mutual recursive functions can be written by placing the type signatures of all mutually recursive function before their
definitions:

mutual
f : A
f = a[f, g]

g : B[f]
g = b[f, g]

This alternative syntax desugars into the new syntax.

Pattern Synonyms

A pattern synonym is a declaration that can be used on the left hand side (when pattern matching) as well as the right
hand side (in expressions). For example:

data : Set where
zero :
suc : →

pattern z = zero
pattern ss x = suc (suc x)
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f : →
f z = z
f (suc z) = ss z
f (ss n) = n

Pattern synonyms are implemented by substitution on the abstract syntax, so definitions are scope-checked but not
type-checked. They are particularly useful for universe constructions.

Positivity Checking

Note: This is a stub.

NO_POSITIVITY_CHECK pragma

The pragma switch off the positivity checker for data/record definitions and mutual blocks.

The pragma must precede a data/record definition or a mutual block.

The pragma cannot be used in safe mode.

Examples:

• Skipping a single data definition:

{-# NO_POSITIVITY_CHECK #-}
data D : Set where
lam : (D → D) → D

• Skipping a single record definition:

{-# NO_POSITIVITY_CHECK #-}
record U : Set where
field ap : U → U

• Skipping an old-style mutual block. Somewhere within a mutual block before a data/record definition:

mutual
data D : Set where
lam : (D → D) → D

{-# NO_POSITIVITY_CHECK #-}
record U : Set where

field ap : U → U

• Skipping an old-style mutual block. Before the mutual keyword:

{-# NO_POSITIVITY_CHECK #-}
mutual
data D : Set where
lam : (D → D) → D

record U : Set where
field ap : U → U

3.21. Positivity Checking 59



Agda Documentation, Release 2.5.2

• Skipping a new-style mutual block. Anywhere before the declaration or the definition of a data/record in the
block:

record U : Set
data D : Set

record U where
field ap : U → U

{-# NO_POSITIVITY_CHECK #-}
data D where
lam : (D → D) → D

POLARITY pragmas

Polarity pragmas can be attached to postulates. The polarities express how the postulate’s arguments are used. The
following polarities are available:

• _: Unused.

• ++: Strictly positive.

• +: Positive.

• -: Negative.

• *: Unknown/mixed.

Polarity pragmas have the form {-# POLARITY name <zero or more polarities> #-}, and can be
given wherever fixity declarations can be given. The listed polarities apply to the given postulate’s arguments (ex-
plicit/implicit/instance), from left to right. Polarities currently cannot be given for module parameters. If the postulate
takes n arguments (excluding module parameters), then the number of polarities given must be between 0 and n (in-
clusive).

Polarity pragmas make it possible to use postulated type formers in recursive types in the following way:

postulate
_ : Set → Set

{-# POLARITY _ ++ #-}

data D : Set where
c : D → D

Note that one can use postulates that may seem benign, together with polarity pragmas, to prove that the empty type
is inhabited:

postulate
__ : Set → Set → Set
lambda : {A B : Set} → (A → B) → A B
apply : {A B : Set} → A B → A → B

{-# POLARITY __ ++ #-}

data : Set where

data D : Set where
c : D → D
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not-inhabited : D →
not-inhabited (c f) = apply f (c f)

d : D
d = c (lambda not-inhabited)

bad :
bad = not-inhabited d

Polarity pragmas are not allowed in safe mode.

Postulates

Note: This is a stub.

Pragmas

Note: This is a stub.

• NO_POSITIVITY_CHECK

• POLARITY

Record Types

• Record declarations

• Record modules

• Eta-expansion

• Instance fields

Note: This is a stub.

Record declarations

Record types can be declared using the record keyword

record Pair (A B : Set) : Set where
field
fst : A
snd : B
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This defines a new type Pair : Set → Set → Set and two projection functions

Pair.fst : {A B : Set} → Pair A B → A
Pair.snd : {A B : Set} → Pair A B → B

Elements of record types can be defined using a record expression

p23 : Pair Nat Nat
p23 = record { fst = 2; snd = 3 }

or using Copatterns

p34 : Pair Nat Nat
Pair.fst p34 = 3
Pair.snd p34 = 4

Record types behaves much like single constructor datatypes (but see eta-expansion below), and you can name the
constructor using the constructor keyword

record Pair (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B

p45 : Pair Nat Nat
p45 = 4 , 5

Note: Naming the constructor is not required to enable pattern matching against record values. Record expression
can appear as patterns.

Record modules

Along with a new type, a record declaration also defines a module containing the projection functions. This allows
records to be “opened”, bringing the fields into scope. For instance

swap : {A B : Set} → Pair A B → Pair B A
swap p = snd , fst
where open Pair p

It possible to add arbitrary definitions to the record module, by defining them inside the record declaration

record Functor (F : Set → Set) : Set1 where
field
fmap : {A B} → (A → B) → F A → F B

_<$_ : {A B} → A → F B → F A
x <$ fb = fmap (𝜆 _ → x) fb

Note: In general new definitions need to appear after the field declarations, but simple non-recursive function def-
initions without pattern matching can be interleaved with the fields. The reason for this restriction is that the type
of the record constructor needs to be expressible using let-expressions. In the example below D1 can only contain
declarations for which the generated type of mkR is well-formed.
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record R Γ : Set where
constructor mkR
field f1 : A1
D1
field f2 : A2

mkR : {Γ} (f1 : A1) (let D1) (f2 : A2) → R Γ

Eta-expansion

Instance fields

Instance fields, that is record fields marked with {{ }} can be used to model “superclass” dependencies. For example:

record Eq (A : Set) : Set where
field
_==_ : A → A → Bool

open Eq {{...}}

record Ord (A : Set) : Set where
field
_<_ : A → A → Bool
{{eqA}} : Eq A

open Ord {{...}} hiding (eqA)

Now anytime you have a function taking an Ord A argument the Eq A instance is also available by virtue of 𝜂-
expansion. So this works as you would expect:

__ : {A : Set} {{OrdA : Ord A}} → A → A → Bool
x y = (x == y) || (x < y)

There is a problem however if you have multiple record arguments with conflicting instance fields. For instance,
suppose we also have a Num record with an Eq field

record Num (A : Set) : Set where
field
fromNat : Nat → A
{{eqA}} : Eq A

open Num {{...}} hiding (eqA)

_3 : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} → A → Bool
x 3 = (x == fromNat 3) || (x < fromNat 3)

Here the Eq A argument to _==_ is not resolved since there are two conflicting candidates: Ord.eqA OrdA and
Num.eqA NumA. To solve this problem you can declare instance fields as overlappable using the overlap keyword:

record Ord (A : Set) : Set where
field
_<_ : A → A → Bool
overlap {{eqA}} : Eq A

3.24. Record Types 63



Agda Documentation, Release 2.5.2

open Ord {{...}} hiding (eqA)

record Num (A : Set) : Set where
field
fromNat : Nat → A
overlap {{eqA}} : Eq A

open Num {{...}} hiding (eqA)

_3 : {A : Set} {{OrdA : Ord A}} {{NumA : Num A}} → A → Bool
x 3 = (x == fromNat 3) || (x < fromNat 3)

Whenever there are multiple valid candidates for an instance goal, if all candidates are overlappable, the goal is solved
by the left-most candidate. In the example above that means that the Eq A goal is solved by the instance from the
Ord argument.

Clauses for instance fields can be omitted when defining values of record types. For instance we can define Nat
instances for Eq, Ord and Num as follows, leaving out cases for the eqA fields:

instance
EqNat : Eq Nat
_==_ {{EqNat}} = Agda.Builtin.Nat._==_

OrdNat : Ord Nat
_<_ {{OrdNat}} = Agda.Builtin.Nat._<_

NumNat : Num Nat
fromNat {{NumNat}} n = n

Reflection

Builtin types

Names

The built-in QNAME type represents quoted names and comes equipped with equality, ordering and a show function.

postulate Name : Set
{-# BUILTIN QNAME Name #-}

primitive
primQNameEquality : Name → Name → Bool
primQNameLess : Name → Name → Bool
primShowQName : Name → String

Name literals are created using the quote keyword and can appear both in terms and in patterns

nameOfNat : Name
nameOfNat = quote Nat

isNat : Name → Bool
isNat (quote Nat) = true
isNat _ = false

Note that the name being quoted must be in scope.
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Metavariables

Metavariables are represented by the built-in AGDAMETA type. They have primitive equality, ordering and show:

postulate Meta : Set
{-# BUILTIN AGDAMETA Meta #-}

primitive
primMetaEquality : Meta → Meta → Bool
primMetaLess : Meta → Meta → Bool
primShowMeta : Meta → String

Builtin metavariables show up in reflected terms.

Literals

Literals are mapped to the built-in AGDALITERAL datatype. Given the appropriate built-in binding for the types Nat,
Float, etc, the AGDALITERAL datatype has the following shape:

data Literal : Set where
nat : (n : Nat) → Literal
float : (x : Float) → Literal
char : (c : Char) → Literal
string : (s : String) → Literal
name : (x : Name) → Literal
meta : (x : Meta) → Literal

{-# BUILTIN AGDALITERAL Literal #-}
{-# BUILTIN AGDALITNAT nat #-}
{-# BUILTIN AGDALITFLOAT float #-}
{-# BUILTIN AGDALITCHAR char #-}
{-# BUILTIN AGDALITSTRING string #-}
{-# BUILTIN AGDALITQNAME name #-}
{-# BUILTIN AGDALITMETA meta #-}

Arguments

Arguments can be (visible), {hidden}, or {{instance}}:

data Visibility : Set where
visible hidden instance : Visibility

{-# BUILTIN HIDING Visibility #-}
{-# BUILTIN VISIBLE visible #-}
{-# BUILTIN HIDDEN hidden #-}
{-# BUILTIN INSTANCE instance #-}

Arguments can be relevant or irrelevant:

data Relevance : Set where
relevant irrelevant : Relevance

{-# BUILTIN RELEVANCE Relevance #-}
{-# BUILTIN RELEVANT relevant #-}
{-# BUILTIN IRRELEVANT irrelevant #-}
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Visibility and relevance characterise the behaviour of an argument:

data ArgInfo : Set where
arg-info : (v : Visibility) (r : Relevance) → ArgInfo

data Arg (A : Set) : Set where
arg : (i : ArgInfo) (x : A) → Arg A

{-# BUILTIN ARGINFO ArgInfo #-}
{-# BUILTIN ARGARGINFO arg-info #-}
{-# BUILTIN ARG Arg #-}
{-# BUILTIN ARGARG arg #-}

Patterns

Reflected patterns are bound to the AGDAPATTERN built-in using the following data type.

data Pattern : Set where
con : (c : Name) (ps : List (Arg Pattern)) → Pattern
dot : Pattern
var : (s : String) → Pattern
lit : (l : Literal) → Pattern
proj : (f : Name) → Pattern
absurd : Pattern

{-# BUILTIN AGDAPATTERN Pattern #-}
{-# BUILTIN AGDAPATCON con #-}
{-# BUILTIN AGDAPATDOT dot #-}
{-# BUILTIN AGDAPATVAR var #-}
{-# BUILTIN AGDAPATLIT lit #-}
{-# BUILTIN AGDAPATPROJ proj #-}
{-# BUILTIN AGDAPATABSURD absurd #-}

Name abstraction

data Abs (A : Set) : Set where
abs : (s : String) (x : A) → Abs A

{-# BUILTIN ABS Abs #-}
{-# BUILTIN ABSABS abs #-}

Terms

Terms, sorts and clauses are mutually recursive and mapped to the AGDATERM, AGDASORT and AGDACLAUSE built-
ins respectively. Types are simply terms. Terms use de Bruijn indices to represent variables.

data Term : Set
data Sort : Set
data Clause : Set
Type = Term

data Term where
var : (x : Nat) (args : List (Arg Term)) → Term
con : (c : Name) (args : List (Arg Term)) → Term
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def : (f : Name) (args : List (Arg Term)) → Term
lam : (v : Visibility) (t : Abs Term) → Term
pat-lam : (cs : List Clause) (args : List (Arg Term)) → Term
pi : (a : Arg Type) (b : Abs Type) → Term
agda-sort : (s : Sort) → Term
lit : (l : Literal) → Term
meta : (x : Meta) → List (Arg Term) → Term
unknown : Term -- Treated as '_' when unquoting.

data Sort where
set : (t : Term) → Sort -- A Set of a given (possibly neutral) level.
lit : (n : Nat) → Sort -- A Set of a given concrete level.
unknown : Sort

data Clause where
clause : (ps : List (Arg Pattern)) (t : Term) → Clause
absurd-clause : (ps : List (Arg Pattern)) → Clause

{-# BUILTIN AGDASORT Sort #-}
{-# BUILTIN AGDATERM Term #-}
{-# BUILTIN AGDACLAUSE Clause #-}

{-# BUILTIN AGDATERMVAR var #-}
{-# BUILTIN AGDATERMCON con #-}
{-# BUILTIN AGDATERMDEF def #-}
{-# BUILTIN AGDATERMMETA meta #-}
{-# BUILTIN AGDATERMLAM lam #-}
{-# BUILTIN AGDATERMEXTLAM pat-lam #-}
{-# BUILTIN AGDATERMPI pi #-}
{-# BUILTIN AGDATERMSORT agda-sort #-}
{-# BUILTIN AGDATERMLIT lit #-}
{-# BUILTIN AGDATERMUNSUPPORTED unknown #-}

{-# BUILTIN AGDASORTSET set #-}
{-# BUILTIN AGDASORTLIT lit #-}
{-# BUILTIN AGDASORTUNSUPPORTED unknown #-}

{-# BUILTIN AGDACLAUSECLAUSE clause #-}
{-# BUILTIN AGDACLAUSEABSURD absurd-clause #-}

Absurd lambdas 𝜆 () are quoted to extended lambdas with an absurd clause.

The built-in constructors AGDATERMUNSUPPORTED and AGDASORTUNSUPPORTED are translated to meta variables
when unquoting.

Declarations

There is a built-in type AGDADEFINITION representing definitions. Values of this type is returned by the
AGDATCMGETDEFINITION built-in described below.

data Definition : Set where
function : (cs : List Clause) → Definition
data-type : (pars : Nat) (cs : List Name) → Definition -- parameters and

→˓constructors
record-type : (c : Name) → Definition -- name of data/record

→˓type
data-cons : (d : Name) → Definition -- name of constructor
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axiom : Definition
prim-fun : Definition

{-# BUILTIN AGDADEFINITION Definition #-}
{-# BUILTIN AGDADEFINITIONFUNDEF function #-}
{-# BUILTIN AGDADEFINITIONDATADEF data-type #-}
{-# BUILTIN AGDADEFINITIONRECORDDEF record-type #-}
{-# BUILTIN AGDADEFINITIONDATACONSTRUCTOR data-cons #-}
{-# BUILTIN AGDADEFINITIONPOSTULATE axiom #-}
{-# BUILTIN AGDADEFINITIONPRIMITIVE prim-fun #-}

Type errors

Type checking computations (see below) can fail with an error, which is a list of ErrorParts. This allows metapro-
grams to generate nice errors without having to implement pretty printing for reflected terms.

-- Error messages can contain embedded names and terms.
data ErrorPart : Set where

strErr : String → ErrorPart
termErr : Term → ErrorPart
nameErr : Name → ErrorPart

{-# BUILTIN AGDAERRORPART ErrorPart #-}
{-# BUILTIN AGDAERRORPARTSTRING strErr #-}
{-# BUILTIN AGDAERRORPARTTERM termErr #-}
{-# BUILTIN AGDAERRORPARTNAME nameErr #-}

Type checking computations

Metaprograms, i.e. programs that create other programs, run in a built-in type checking monad TC:

postulate
TC : {a} → Set a → Set a
returnTC : {a} {A : Set a} → A → TC A
bindTC : {a b} {A : Set a} {B : Set b} → TC A → (A → TC B) → TC B

{-# BUILTIN AGDATCM TC #-}
{-# BUILTIN AGDATCMRETURN returnTC #-}
{-# BUILTIN AGDATCMBIND bindTC #-}

The TC monad provides an interface to the Agda type checker using the following primitive operations:

postulate
-- Unify two terms, potentially solving metavariables in the process.
unify : Term → Term → TC

-- Throw a type error. Can be caught by catchTC.
typeError : {a} {A : Set a} → List ErrorPart → TC A

-- Block a type checking computation on a metavariable. This will abort
-- the computation and restart it (from the beginning) when the
-- metavariable is solved.
blockOnMeta : {a} {A : Set a} → Meta → TC A

-- Prevent current solutions of metavariables from being rolled back in
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-- case 'blockOnMeta' is called.
commitTC : TC

-- Backtrack and try the second argument if the first argument throws a
-- type error.
catchTC : {a} {A : Set a} → TC A → TC A → TC A

-- Infer the type of a given term
inferType : Term → TC Type

-- Check a term against a given type. This may resolve implicit arguments
-- in the term, so a new refined term is returned. Can be used to create
-- new metavariables: newMeta t = checkType unknown t
checkType : Term → Type → TC Term

-- Compute the normal form of a term.
normalise : Term → TC Term

-- Compute the weak head normal form of a term.
reduce : Term → TC Term

-- Get the current context. Returns the context in reverse order, so that
-- it is indexable by deBruijn index.
getContext : TC (List (Arg Type))

-- Extend the current context with a variable of the given type.
extendContext : {a} {A : Set a} → Arg Type → TC A → TC A

-- Set the current context. Takes a context telescope with the outer-most
-- entry first, in contrast to 'getContext'.
inContext : {a} {A : Set a} → List (Arg Type) → TC A → TC A

-- Quote a value, returning the corresponding Term.
quoteTC : {a} {A : Set a} → A → TC Term

-- Unquote a Term, returning the corresponding value.
unquoteTC : {a} {A : Set a} → Term → TC A

-- Create a fresh name.
freshName : String → TC Name

-- Declare a new function of the given type. The function must be defined
-- later using 'defineFun'. Takes an Arg Name to allow declaring instances
-- and irrelevant functions. The Visibility of the Arg must not be hidden.
declareDef : Arg Name → Type → TC

-- Define a declared function. The function may have been declared using
-- 'declareDef' or with an explicit type signature in the program.
defineFun : Name → List Clause → TC

-- Get the type of a defined name. Replaces 'primNameType'.
getType : Name → TC Type

-- Get the definition of a defined name. Replaces 'primNameDefinition'.
getDefinition : Name → TC Definition

-- Check if a name refers to a macro
isMacro : Name → TC Bool
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-- Change the behaviour of inferType, checkType, quoteTC, getContext
-- to normalise (or not) their results. The default behaviour is no
-- normalisation.
withNormalisation : {a} {A : Set a} → Bool → TC A → TC A

{-# BUILTIN AGDATCMUNIFY unify #-}
{-# BUILTIN AGDATCMTYPEERROR typeError #-}
{-# BUILTIN AGDATCMBLOCKONMETA blockOnMeta #-}
{-# BUILTIN AGDATCMCATCHERROR catchTC #-}
{-# BUILTIN AGDATCMINFERTYPE inferType #-}
{-# BUILTIN AGDATCMCHECKTYPE checkType #-}
{-# BUILTIN AGDATCMNORMALISE normalise #-}
{-# BUILTIN AGDATCMREDUCE reduce #-}
{-# BUILTIN AGDATCMGETCONTEXT getContext #-}
{-# BUILTIN AGDATCMEXTENDCONTEXT extendContext #-}
{-# BUILTIN AGDATCMINCONTEXT inContext #-}
{-# BUILTIN AGDATCMQUOTETERM quoteTC #-}
{-# BUILTIN AGDATCMUNQUOTETERM unquoteTC #-}
{-# BUILTIN AGDATCMFRESHNAME freshName #-}
{-# BUILTIN AGDATCMDECLAREDEF declareDef #-}
{-# BUILTIN AGDATCMDEFINEFUN defineFun #-}
{-# BUILTIN AGDATCMGETTYPE getType #-}
{-# BUILTIN AGDATCMGETDEFINITION getDefinition #-}
{-# BUILTIN AGDATCMCOMMIT commitTC #-}
{-# BUILTIN AGDATCMISMACRO isMacro #-}
{-# BUILTIN AGDATCMWITHNORMALISATION withNormalisation #-}

Metaprogramming

There are three ways to run a metaprogram (TC computation). To run a metaprogram in a term position you use
a macro. To run metaprograms to create top-level definitions you can use the unquoteDecl and unquoteDef
primitives (see Unquoting Declarations).

Macros

Macros are functions of type t1 → t2 → .. → Term → TC that are defined in a macro block. The last
argument is supplied by the type checker and will be the representation of a metavariable that should be instantiated
with the result of the macro.

Macro application is guided by the type of the macro, where Term and Name arguments are quoted before passed to
the macro. Arguments of any other type are preserved as-is.

For example, the macro application f u v w where f : Term → Name → Bool → Term → TC
desugars into:

unquote (f (quoteTerm u) (quote v) w)

where quoteTerm u takes a u of arbitrary type and returns its representation in the Term data type, and unquote
m runs a computation in the TC monad. Specifically, when checking unquote m : A for some type A the type
checker proceeds as follows:

• Check m : Term → TC .

• Create a fresh metavariable hole : A.
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• Let qhole : Term be the quoted representation of hole.

• Execute m qhole.

• Return (the now hopefully instantiated) hole.

Reflected macro calls are constructed using the def constructor, so given a macro g : Term → TC the term
def (quote g) [] unquotes to a macro call to g.

Note: The quoteTerm and unquote primitives are available in the language, but it is recommended to avoid using
them in favour of macros.

Limitations:

• Macros cannot be recursive. This can be worked around by defining the recursive function outside the macro
block and have the macro call the recursive function.

Silly example:

macro
plus-to-times : Term → Term → TC
plus-to-times (def (quote _+_) (a b [])) hole = unify hole (def (quote _*_) (a

→˓b []))
plus-to-times v hole = unify hole v

thm : (a b : Nat) → plus-to-times (a + b) a * b
thm a b = refl

Macros lets you write tactics that can be applied without any syntactic overhead. For instance, suppose you have a
solver:

magic : Type → Term

that takes a reflected goal and outputs a proof (when successful). You can then define the following macro:

macro
by-magic : Term → TC
by-magic hole =
bindTC (inferType hole) 𝜆 goal →
unify hole (magic goal)

This lets you apply the magic tactic as a normal function:

thm : ¬ P NP
thm = by-magic

Unquoting Declarations

While macros let you write metaprograms to create terms, it is also useful to be able to create top-level definitions.
You can do this from a macro using the declareDef and defineFun primitives, but there is no way to bring such
definitions into scope. For this purpose there are two top-level primitives unquoteDecl and unquoteDef that
runs a TC computation in a declaration position. They both have the same form:

unquoteDecl x1 .. x = m
unquoteDef x1 .. x = m
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except that the list of names can be empty for unquoteDecl, but not for unquoteDef. In both cases m should
have type TC . The main difference between the two is that unquoteDecl requires m to both declare (with
declareDef) and define (with defineFun) the x whereas unquoteDef expects the x to be already declared. In
other words, unquoteDecl brings the x into scope, but unquoteDef requires them to already be in scope.

In m the x stand for the names of the functions being defined (i.e. x : Name) rather than the actual functions.

One advantage of unquoteDef over unquoteDecl is that unquoteDef is allowed in mutual blocks, allowing
mutually recursion between generated definitions and hand-written definitions.

Rewriting

Note: This is a stub.

Safe Agda

Note: This is a stub.

Sized Types

Note: This is a stub.

Sizes help the termination checker by tracking the depth of data structures across definition boundaries.

The built-in combinators for sizes are described in Sized types.

Example: Finite languages

See Traytel 2016.

Decidable languages can be represented as infinite trees. Each node has as many children as the number of characters
in the alphabet A. Each path from the root of the tree to a node determines a possible word in the language. Each node
has a boolean label, which is true if and only if the word corresponding to that node is in the language. In particular,
the root node of the tree is labelled true if and only if the word belongs to the language.

These infinite trees can be represented as the following coinductive data-type:

record Lang (i : Size) (A : Set) : Set where
coinductive
field

𝜈 : Bool
𝛿 : {j : Size< i} → A → Lang j A

open Lang
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As we said before, given a language a : Lang A, 𝜈 a true iff 𝜖 a. On the other hand, the language 𝛿 a x
: Lang A is the Brzozowski derivative of a with respect to the character x, that is, w 𝛿 a x iff xw a.

With this data type, we can define some regular languages. The first one, the empty language, contains no words; so
all the nodes are labelled false:

: {i A} → Lang i A
𝜈 = false
𝛿 _ =

The second one is the language containing a single word; the empty word. The root node is labelled true, and all the
others are labelled false:

𝜖 : {i A} → Lang i A
𝜈 𝜖 = true
𝛿 𝜖 _ =

To compute the union (or sum) of two languages, we do a point-wise or operation on the labels of their nodes:

_+_ : {i A} → Lang i A → Lang i A → Lang i A
𝜈 (a + b) = 𝜈 a 𝜈 b
𝛿 (a + b) x = 𝛿 a x + 𝛿 b x

infixl 10 _+_

Now, lets define concatenation. The base case (𝜈) is straightforward: 𝜖 a·b iff 𝜖 a and 𝜖 b.

For the derivative (𝛿), assume that we have a word w, w 𝛿 (a · b) x. This means that w = 𝛼𝛽, with 𝛼 a and
𝛽 b.

We have to consider two cases:

1. 𝜖 a. Then, either: * 𝛼 = 𝜖, and w = 𝛽 = x · 𝛽’, where 𝛽’ 𝛿 b x. * 𝛼 = x𝛼’, with 𝛼’ 𝛿 a x.

2. 𝜖 a. Then, only the second case above is possible: * 𝛼 = x𝛼’, with 𝛼’ 𝛿 a x.

_·_ : {i A} → Lang i A → Lang i A → Lang i A
𝜈 (a · b) = 𝜈 a 𝜈 b
𝛿 (a · b) x = if 𝜈 a then 𝛿 a x · b + 𝛿 b x else 𝛿 a x · b

infixl 20 _·_

Here is where sized types really shine. Without sized types, the termination checker would not be able to recognize that
_+_ or if_then_else are not inspecting the tree, which could render the definition non-productive. By contrast,
with sized types, we know that the a + b is defined to the same depth as a and b are.

In a similar spirit, we can define the Kleene star:

_* : {i A} → Lang i A → Lang i A
𝜈 (a *) = true
𝛿 (a *) x = 𝛿 a x · a *

infixl 30 _*

Again, because the types tell us that _·_ preserves the size of its inputs, we can have the recursive call to a * under a
function call to _·_.
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Testing

First, we want to give a precise notion of membership in a language. We consider a word as a List of characters.

__ : {i} {A} → List i A → Lang i A → Bool
[] a = 𝜈 a
(x w) a = w 𝛿 a x

Note how the size of the word we test for membership cannot be larger than the depth to which the language tree is
defined.

If we want to use regular, non-sized lists, we need to ask for the language to have size 𝜔.

__ : {A} → List A → Lang 𝜔 A → Bool
[] a = 𝜈 a
(x w) a = w 𝛿 a x

Intuitively, 𝜔 is a Size larger than the size of any term than one could possibly define in Agda.

Now, let’s consider binary strings as words. First, we define the languages containing a single word of length 1:

_ : {i} → Bool → Lang i Bool
𝜈 _ = false

𝛿 false false = 𝜖
𝛿 true true = 𝜖
𝛿 false true =
𝛿 true false =

Now we can define the bip-bop language, consisting of strings of even length starting with “true”, where each “true”
is followed by “false”, and viceversa.

bip-bop = ( true · false )*

We can now test words for membership in the language bip-bop

test1 : (true false true false true false []) bip-bop true
test1 = refl

test2 : (true false true false true []) bip-bop false
test2 = refl

test3 : (true true false []) bip-bop false
test3 = refl

References

• Formal Languages, Formally and Coinductively, Dmitriy Traytel, FSCD (2016).

Telescopes

Note: This is a stub.
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Termination Checking

Note: This is a stub.

With-functions

Universe Levels

Note: This is a stub.

With-Abstraction

• Usage

– Generalisation

– Nested with-abstractions

– Simultaneous abstraction

– Rewrite

– The inspect idiom

– Alternatives to with-abstraction

– Performance considerations

• Technical details

– Examples

– Ill-typed with-abstractions

With abstraction was first introduced by Conor McBride [McBride2004] and lets you pattern match on the result of
an intermediate computation by effectively adding an extra argument to the left-hand side of your function.

Usage

In the simplest case the with construct can be used just to discriminate on the result of an intermediate computation.
For instance

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x xs) with p x
filter p (x xs) | true = x filter p xs
filter p (x xs) | false = filter p xs
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The clause containing the with-abstraction has no right-hand side. Instead it is followed by a number of clauses with
an extra argument on the left, separated from the original arguments by a vertical bar (|).

When the original arguments are the same in the new clauses you can use the ... syntax:

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x xs) with p x
... | true = x filter p xs
... | false = filter p xs

In this case ... expands to filter p (x xs). There are three cases where you have to spell out the left-hand
side:

• If you want to do further pattern matching on the original arguments.

• When the pattern matching on the intermediate result refines some of the other arguments (see Dot patterns).

• To disambiguate the clauses of nested with abstractions (see Nested with-abstractions below).

Generalisation

The power of with-abstraction comes from the fact that the goal type and the type of the original arguments are
generalised over the value of the scrutinee. See Technical details below for the details. This generalisation is important
when you have to prove properties about functions defined using with. For instance, suppose we want to prove that
the filter function above satisfies some property P. Starting out by pattern matching of the list we get the following
(with the goal types shown in the holes)

postulate P : {A} → List A → Set
postulate p-nil : P []
postulate Q : Set
postulate q-nil : Q

proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p [] = {! P [] !}
proof p (x xs) = {! P (filter p xs | p x) !}

In the cons case we have to prove that P holds for filter p xs | p x. This is the syntax for a stuck with-
abstraction–filter cannot reduce since we don’t know the value of p x. This syntax is used for printing, but is not
accepted as valid Agda code. Now if we with-abstract over p x, but don’t pattern match on the result we get:

proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p [] = p-nil
proof p (x xs) with p x
... | r = {! P (filter p xs | r) !}

Here the p x in the goal type has been replaced by the variable r introduced for the result of p x. If we pattern match
on r the with-clauses can reduce, giving us:

proof : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs)
proof p [] = p-nil
proof p (x xs) with p x
... | true = {! P (x filter p xs) !}
... | false = {! P (filter p xs) !}

Both the goal type and the types of the other arguments are generalised, so it works just as well if we have an argument
whose type contains filter p xs.
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proof2 : {A : Set} (p : A → Bool) (xs : List A) → P (filter p xs) → Q
proof2 p [] _ = q-nil
proof2 p (x xs) H with p x
... | true = {! H : P (filter p xs) !}
... | false = {! H : P (x filter p xs) !}

The generalisation is not limited to scrutinees in other with-abstractions. All occurrences of the term in the goal type
and argument types will be generalised.

Note that this generalisation is not always type correct and may result in a (sometimes cryptic) type error. See Ill-typed
with-abstractions below for more details.

Nested with-abstractions

With-abstractions can be nested arbitrarily. The only thing to keep in mind in this case is that the ... syntax applies
to the closest with-abstraction. For example, suppose you want to use ... in the definition below.

compare : Nat → Nat → Comparison
compare x y with x < y
compare x y | false with y < x
compare x y | false | false = equal
compare x y | false | true = greater
compare x y | true = less

You might be tempted to replace compare x y with ... in all the with-clauses as follows.

compare : Nat → Nat → Comparison
compare x y with x < y
... | false with y < x
... | false = equal
... | true = greater
... | true = less -- WRONG

This, however, would be wrong. In the last clause the ... is interpreted as belonging to the inner with-abstraction
(the whitespace is not taken into account) and thus expands to compare x y | false | true. In this case you
have to spell out the left-hand side and write

compare : Nat → Nat → Comparison
compare x y with x < y
... | false with y < x
... | false = equal
... | true = greater
compare x y | true = less

Simultaneous abstraction

You can abstract over multiple terms in a single with abstraction. To do this you separate the terms with vertical bars
(|).

compare : Nat → Nat → Comparison
compare x y with x < y | y < x
... | true | _ = less
... | _ | true = greater
... | false | false = equal
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In this example the order of abstracted terms does not matter, but in general it does. Specifically, the types of later
terms are generalised over the values of earlier terms. For instance

postulate plus-commute : (a b : Nat) → a + b b + a
postulate P : Nat → Set

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t | ab | eq = {! t : P ab, eq : ab b + a !}

Note that both the type of t and the type of the result eq of plus-commute a b have been generalised over a +
b. If the terms in the with-abstraction were flipped around, this would not be the case. If we now pattern match on eq
we get

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t | .(b + a) | refl = {! t : P (b + a) !}

and can thus fill the hole with t. In effect we used the commutativity proof to rewrite a + b to b + a in the
type of t. This is such a useful thing to do that there is special syntax for it. See Rewrite below. A limitation of
generalisation is that only occurrences of the term that are visible at the time of the abstraction are generalised over,
but more instances of the term may appear once you start filling in the right-hand side or do further matching on the
left. For instance, consider the following contrived example where we need to match on the value of f n for the type
of q to reduce, but we then want to apply q to a lemma that talks about f n:

postulate
R : Set
P : Nat → Set
f : Nat → Nat
lemma : n → P (f n) → R

Q : Nat → Set
Q zero =
Q (suc n) = P (suc n)

proof : (n : Nat) → Q (f n) → R
proof n q with f n
proof n () | zero
proof n q | suc fn = {! q : P (suc fn) !}

Once we have generalised over f n we can no longer apply the lemma, which needs an argument of type P (f n).
To solve this problem we can add the lemma to the with-abstraction:

proof : (n : Nat) → Q (f n) → R
proof n q with f n | lemma n
proof n () | zero | _
proof n q | suc fn | lem = lem q

In this case the type of lemma n (P (f n) → R) is generalised over f n so in the right hand side of the last
clause we have q : P (suc fn) and lem : P (suc fn) → R.

See The Inspect idiom below for an alternative approach.

Rewrite

Remember example of simultaneous abstraction from above.
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postulate plus-commute : (a b : Nat) → a + b b + a

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t with a + b | plus-commute a b
thm a b t | .(b + a) | refl = t

This pattern of rewriting by an equation by with-abstracting over it and its left-hand side is common enough that there
is special syntax for it:

thm : (a b : Nat) → P (a + b) → P (b + a)
thm a b t rewrite plus-commute a b = t

The rewrite construction takes a term eq of type lhs rhs, where __ is the built-in equality type, and expands
to a with-abstraction of lhs and eq followed by a match of the result of eq against refl:

f ps rewrite eq = v

-->

f ps with lhs | eq
... | .rhs | refl = v

One limitation of the rewrite construction is that you cannot do further pattern matching on the arguments after
the rewrite, since everything happens in a single clause. You can however do with-abstractions after the rewrite. For
instance,

postulate T : Nat → Set

isEven : Nat → Bool
isEven zero = true
isEven (suc zero) = false
isEven (suc (suc n)) = isEven n

thm1 : (a b : Nat) → T (a + b) → T (b + a)
thm1 a b t rewrite plus-commute a b with isEven a
thm1 a b t | true = t
thm1 a b t | false = t

Note that the with-abstracted arguments introduced by the rewrite (lhs and eq) are not visible in the code.

The inspect idiom

When you with-abstract a term t you lose the connection between t and the new argument representing its value.
That’s fine as long as all instances of t that you care about get generalised by the abstraction, but as we saw above
this is not always the case. In that example we used simultaneous abstraction to make sure that we did capture all the
instances we needed. An alternative to that is to use the inspect idiom, which retains a proof that the original term is
equal to its abstraction.

In the simplest form, the inspect idiom uses a singleton type:

data Singleton {a} {A : Set a} (x : A) : Set a where
_with_ : (y : A) → x y → Singleton x

inspect : {a} {A : Set a} (x : A) → Singleton x
inspect x = x with refl
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Now instead of with-abstracting t, you can abstract over inspect t. For instance,

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x xs) with inspect (p x)
... | true with eq = {! eq : p x true !}
... | false with eq = {! eq : p x false !}

Here we get proofs that p x true and p x false in the respective branches that we can on use the right.
Note that since the with-abstraction is over inspect (p x) rather than p x, the goal and argument types are no
longer generalised over p x. To fix that we can replace the singleton type by a function graph type as follows (see
Anonymous modules to learn about the use of a module to bind the type arguments to Graph and inspect):

module _ {a b} {A : Set a} {B : A → Set b} where

data Graph (f : x → B x) (x : A) (y : B x) : Set b where
ingraph : f x y → Graph f x y

inspect : (f : x → B x) (x : A) → Graph f x (f x)
inspect _ _ = ingraph refl

To use this on a term g v you with-abstract over both g v and inspect g v. For instance, applying this to the
example from above we get

postulate
R : Set
P : Nat → Set
f : Nat → Nat
lemma : n → P (f n) → R

Q : Nat → Set
Q zero =
Q (suc n) = P (suc n)

proof : (n : Nat) → Q (f n) → R
proof n q with f n | inspect f n
proof n () | zero | _
proof n q | suc fn | ingraph eq = {! q : P (suc fn), eq : f n suc fn !}

We could then use the proof that f n suc fn to apply lemma to q.

This version of the inspect idiom is defined (using slightly different names) in the standard library in the mod-
ule Relation.Binary.PropositionalEquality and in the agda-prelude in Prelude.Equality.
Inspect (reexported by Prelude).

Alternatives to with-abstraction

Although with-abstraction is very powerful there are cases where you cannot or don’t want to use it. For instance,
you cannot use with-abstraction if you are inside an expression in a right-hand side. In that case there are a couple of
alternatives.

Pattern lambdas

Agda does not have a primitive case construct, but one can be emulated using pattern matching lambdas. First you
define a function case_of_ as follows:
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case_of_ : {a b} {A : Set a} {B : Set b} → A → (A → B) → B
case x of f = f x

You can then use this function with a pattern matching lambda as the second argument to get a Haskell-style case
expression:

filter : {A : Set} → (A → Bool) → List A → List A
filter p [] = []
filter p (x xs) =
case p x of
𝜆 { true → x filter p xs
; false → filter p xs
}

This version of case_of_ only works for non-dependent functions. For dependent functions the target type will in
most cases not be inferrable, but you can use a variant with an explicit B for this case:

case_return_of_ : {a b} {A : Set a} (x : A) (B : A → Set b) → ( x → B x) → B x
case x return B of f = f x

The dependent version will let you generalise over the scrutinee, just like a with-abstraction, but you have to do it
manually. Two things that it will not let you do is

• further pattern matching on arguments on the left-hand side, and

• refine arguments on the left by the patterns in the case expression. For instance if you matched on a Vec A n
the n would be refined by the nil and cons patterns.

Helper functions

Internally with-abstractions are translated to auxiliary functions (see Technical details below) and you can always1

write these functions manually. The downside is that the type signature for the helper function needs to be written out
explicitly, but fortunately the Emacs Mode has a command (C-c C-h) to generate it using the same algorithm that
generates the type of a with-function.

Performance considerations

The generalisation step of a with-abstraction needs to normalise the scrutinee and the goal and argument types to make
sure that all instances of the scrutinee are generalised. The generalisation also needs to be type checked to make sure
that it’s not ill-typed. This makes it expensive to type check a with-abstraction if

• the normalisation is expensive,

• the normalised form of the goal and argument types are big, making finding the instances of the scrutinee
expensive,

• type checking the generalisation is expensive, because the types are big, or because checking them involves
heavy computation.

In these cases it is worth looking at the alternatives to with-abstraction from above.

1 The termination checker has special treatment for with-functions, so replacing a with by the equivalent helper function might fail termination.
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Technical details

Internally with-abstractions are translated to auxiliary functions–there are no with-abstractions in the Core language.
This translation proceeds as follows. Given a with-abstraction

𝑓 : Γ → 𝐵
𝑓 𝑝𝑠 with 𝑡1 | . . . | 𝑡𝑚
𝑓 𝑝𝑠1 | 𝑞11 | . . . | 𝑞1𝑚 = 𝑣1
...
𝑓 𝑝𝑠𝑛 | 𝑞𝑛1 | . . . | 𝑞𝑛𝑚 = 𝑣𝑛

where ∆ ⊢ 𝑝𝑠 : Γ (i.e. ∆ types the variables bound in 𝑝𝑠), we

• Infer the types of the scrutinees 𝑡1 : 𝐴1, . . . , 𝑡𝑚 : 𝐴𝑚.

• Partition the context ∆ into ∆1 and ∆2 such that ∆1 is the smallest context where ∆1 ⊢ 𝑡𝑖 : 𝐴𝑖 for all 𝑖, i.e.,
where the scrutinees are well-typed. Note that the partitioning is not required to be a split, ∆1∆2 can be a
(well-formed) reordering of ∆.

• Generalise over the 𝑡𝑖 s, by computing

𝐶 = (𝑤1 : 𝐴1)(𝑤1 : 𝐴′
2) . . . (𝑤𝑚 : 𝐴′

𝑚) → ∆′
2 → 𝐵′

such that the normal form of 𝐶 does not contain any 𝑡𝑖 and

𝐴′
𝑖[𝑤1 := 𝑡1 . . . 𝑤𝑖−1 := 𝑡𝑖−1] ≃ 𝐴𝑖

(∆′
2 → 𝐵′)[𝑤1 := 𝑡1 . . . 𝑤𝑚 := 𝑡𝑚] ≃ ∆2 → 𝐵

where 𝑋 ≃ 𝑌 is equality of the normal forms of 𝑋 and 𝑌 . The type of the auxiliary function is then ∆1 → 𝐶.

• Check that ∆1 → 𝐶 is type correct, which is not guaranteed (see below).

• Add a function 𝑓𝑎𝑢𝑥, mutually recursive with 𝑓 , with the definition

𝑓𝑎𝑢𝑥 : ∆1 → 𝐶
𝑓𝑎𝑢𝑥 𝑝𝑠11 qs1 𝑝𝑠21 = 𝑣1
...
𝑓𝑎𝑢𝑥 𝑝𝑠1𝑛 qs𝑛 𝑝𝑠2𝑛 = 𝑣𝑛

where qs𝑖 = 𝑞𝑖1 . . . 𝑞𝑖𝑚, and 𝑝𝑠1𝑖 : ∆1 and 𝑝𝑠2𝑖 : ∆2 are the patterns from 𝑝𝑠𝑖 corresponding to the variables of
𝑝𝑠. Note that due to the possible reordering of the partitioning of ∆ into ∆1 and ∆2, the patterns 𝑝𝑠1𝑖 and 𝑝𝑠2𝑖
can be in a different order from how they appear 𝑝𝑠𝑖.

• Replace the with-abstraction by a call to 𝑓𝑎𝑢𝑥 resulting in the final definition

𝑓 : Γ → 𝐵
𝑓 𝑝𝑠 = 𝑓𝑎𝑢𝑥 xs1 𝑡𝑠 xs2

where 𝑡𝑠 = 𝑡1 . . . 𝑡𝑚 and xs1 and xs2 are the variables from ∆ corresponding to ∆1 and ∆2 respectively.

Examples

Below are some examples of with-abstractions and their translations.

postulate
A : Set
_+_ : A → A → A
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T : A → Set
mkT : x → T x
P : x → T x → Set

-- the type A of the with argument has no free variables, so the with
-- argument will come first
f1 : (x y : A) (t : T (x + y)) → T (x + y)
f1 x y t with x + y
f1 x y t | w = {!!}

-- Generated with function
f-aux1 : (w : A) (x y : A) (t : T w) → T w
f-aux1 w x y t = {!!}

-- x and p are not needed to type the with argument, so the context
-- is reordered with only y before the with argument
f2 : (x y : A) (p : P y (mkT y)) → P y (mkT y)
f2 x y p with mkT y
f2 x y p | w = {!!}

f-aux2 : (y : A) (w : T y) (x : A) (p : P y w) → P y w
f-aux2 y w x p = {!!}

postulate
H : x y → T (x + y) → Set

-- Multiple with arguments are always inserted together, so in this case
-- t ends up on the left since it’s needed to type h and thus x + y isn’t
-- abstracted from the type of t
f3 : (x y : A) (t : T (x + y)) (h : H x y t) → T (x + y)
f3 x y t h with x + y | h
f3 x y t h | w1 | w2 = {! t : T (x + y), goal : T w1 !}

f-aux3 : (x y : A) (t : T (x + y)) (h : H x y t) (w1 : A) (w2 : H x y t) → T w1
f-aux3 x y t h w1 w2 = {!!}

-- But earlier with arguments are abstracted from the types of later ones
f4 : (x y : A) (t : T (x + y)) → T (x + y)
f4 x y t with x + y | t
f4 x y t | w1 | w2 = {! t : T (x + y), w2 : T w1, goal : T w1 !}

f-aux4 : (x y : A) (t : T (x + y)) (w1 : A) (w2 : T w1) → T w1
f-aux4 x y t w1 w2 = {!!}

Ill-typed with-abstractions

As mentioned above, generalisation does not always produce well-typed results. This happens when you abstract over
a term that appears in the type of a subterm of the goal or argument types. The simplest example is abstracting over
the first component of a dependent pair. For instance,

postulate
A : Set
B : A → Set
H : (x : A) → B x → Set
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bad-with : (p : Σ A B) → H (fst p) (snd p)
bad-with p with fst p
... | _ = {!!}

Here, generalising over fst p results in an ill-typed application H w (snd p) and you get the following type
error:

fst p != w of type A
when checking that the type (p : Σ A B) (w : A) → H w (snd p) of
the generated with function is well-formed

This message can be a little difficult to interpret since it only prints the immediate problem (fst p != w) and the
full type of the with-function. To get a more informative error, pointing to the location in the type where the error is,
you can copy and paste the with-function type from the error message and try to type check it separately.

Without K

Note: This is a stub.
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Tools

Automatic Proof Search (Auto)

Note: This is a stub.

Command-line options

Note: This is a stub.

Compilers

• Backends

– GHC Backend

– UHC Backend

– JavaScript Backend

• Optimizations

– Builtin natural numbers

– Erasable types
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Backends

GHC Backend

The GHC backend translates Agda programs into GHC Haskell programs.

Usage

The backend can be invoked from the command line using the flag --compile:

agda --compile [--compile-dir=<DIR>] [--ghc-flag=<FLAG>] <FILE>.agda

Pragmas

Example

The following “Hello, World!” example requires some Built-ins and uses the Foreign Function Interface:

module HelloWorld where

{-# IMPORT Data.Text.IO #-}

data Unit : Set where
unit : Unit

{-# COMPILED_DATA Unit () () #-}

postulate
String : Set

{-# BUILTIN STRING String #-}

postulate
IO : Set → Set

{-# BUILTIN IO IO #-}
{-# COMPILED_TYPE IO IO #-}

postulate
putStr : String → IO Unit

{-# COMPILED putStr Data.Text.IO.putStr #-}

main : IO Unit
main = putStr "Hello, World!"

After compiling the example

agda --compile HelloWorld.agda

you can run the HelloWorld program which prints Hello, World!.
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Required libraries for the Built-ins

• primFloatEquality requires the ieee754 library.

UHC Backend

New in version 2.5.1.

Note: The Agda Standard Library has been updated to support this new backend. This backend is currently experi-
mental.

The Agda UHC backend targets the Core language of the Utrecht Haskell Compiler (UHC). This backend works on
the Mac and Linux platforms and requires GHC >= 7.10.

The backend is disabled by default, as it will pull in some large dependencies. To enable the backend, use the “uhc”
cabal flag when installing Agda:

cabal install Agda -fuhc

The backend also requires UHC to be installed. UHC is not available on Hackage and needs to be installed manually.
This version of Agda has been tested with UHC 1.1.9.4, using other UHC versions may cause problems. To install
UHC, the following commands can be used:

cabal install uhc-util-0.1.6.6 uulib-0.9.22
wget https://github.com/UU-ComputerScience/uhc/archive/v1.1.9.4.tar.gz
tar -xf v1.1.9.4.tar.gz
cd uhc-1.1.9.4/EHC
./configure
make
make install

The Agda UHC compiler can be invoked from the command line using the flag --uhc:

agda --uhc [--compile-dir=<DIR>]
[--uhc-bin=<UHC>] [--uhc-dont-call-uhc] <FILE>.agda

Limitations

The UHC backend currently does not support Unicode strings. See issue 1857 for details.

JavaScript Backend

The JavaScript backend translates Agda code to JavaScript code.

Usage

The backend can be invoked from the command line using the flag --js:

agda --js [--compile-dir=<DIR>] <FILE>.agda
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Optimizations

Builtin natural numbers

Builtin natural numbers are represented as arbitrary-precision integers. The builtin functions on natural numbers are
compiled to the corresponding arbitrary-precision integer functions.

Note that pattern matching on an Integer is slower than on an unary natural number. Code that does a lot of unary
manipulations and doesn’t use builtin arithmetic likely becomes slower due to this optimization. If you find that this
is the case, it is recommended to use a different, but isomorphic type to the builtin natural numbers.

Erasable types

A data type is considered erasable if it has a single constructor whose arguments are all erasable types, or functions
into erasable types. The compilers will erase

• calls to functions into erasable types

• pattern matches on values of erasable type

At the moment the compilers only have enough type information to erase calls of top-level functions that can be seen
to return a value of erasable type without looking at the arguments of the call. In other words, a function call will not
be erased if it calls a lambda bound variable, or the result is erasable for the given arguments, but not for others.

Typical examples of erasable types are the equality type and the accessibility predicate used for well-founded recur-
sion:

data __ {a} {A : Set a} (x : A) : A → Set a where
refl : x x

data Acc {a} {A : Set a} (_<_ : A → A → Set a) (x : A) : Set a where
acc : ( y → y < x → Acc _<_ y) → Acc _<_ x

The erasure means that equality proofs will (mostly) be erased, and never looked at, and functions defined by well-
founded recursion will ignore the accessibility proof.

Emacs Mode

Note: This is a stub.

Keybindings

Commands working with types can be prefixed with C-u to compute type without further normalisation and with C-u
C-u to compute normalised types.
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Global commands

C-c C-l Load file
C-c C-x C-c Compile file
C-c C-x C-q Quit, kill the Agda process
C-c C-x C-r Kill and restart the Agda process
C-c C-x C-d Remove goals and highlighting (deactivate)
C-c C-x C-h Toggle display of hidden arguments
C-c C-= Show constraints
C-c C-s Solve constraints
C-c C-? Show all goals
C-c C-f Move to next goal (forward)
C-c C-b Move to previous goal (backwards)
C-c C-d Infer (deduce) type
C-c C-o Module contents
C-c C-z Search through definitions in scope
C-c C-n Compute normal form
C-u C-c C-n Compute normal form, ignoring abstract
C-u C-u C-c C-n Compute and print normal form of show <expression>
C-c C-x M-; Comment/uncomment rest of buffer
C-c C-x C-s Switch to a different Agda version

Commands in context of a goal

Commands expecting input (for example which variable to case split) will either use the text inside the goal or ask the
user for input.

C-c C-SPC Give (fill goal)
C-c C-r Refine. Partial give: makes new holes for missing arguments
C-c C-a Automatic Proof Search (Auto)
C-c C-c Case split
C-c C-h Compute type of helper function and add type signature to kill ring (clipboard)
C-c C-t Goal type
C-c C-e Context (environment)
C-c C-d Infer (deduce) type
C-c C-, Goal type and context
C-c C-. Goal type, context and inferred type
C-c C-o Module contents
C-c C-n Compute normal form
C-u C-c C-n Compute normal form, ignoring abstract
C-u C-u C-c C-n Compute and print normal form of show <expression>

Other commands

TAB Indent current line, cycles between points
S-TAB Indent current line, cycles in opposite direction
M-. Go to definition of identifier under point
Middle mouse button Go to definition of identifier clicked on
M-* Go back (Emacs < 25.1)
M-, Go back (Emacs 25.1)
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Unicode input

The Agda emacs mode comes with an input method for for easily writing Unicode characters. Most Unicode character
can be input by typing their corresponding TeX or LaTeX commands, eg. typing \lambda will input 𝜆. To see all
characters you can input using the Agda input method see M-x describe-input-method Agda.

If you know the Unicode name of a character you can input it using M-x ucs-insert or C-x 8 RET. Example:
C-x 8 RET not SPACE a SPACE sub TAB RET to insert “NOT A SUBSET OF” .

To find out how to input a specific character, eg from the standard library, position the cursor over the character and
use M-x describe-char or C-u C-x =.

The Agda input method can be customised via M-x customize-group agda-input.

Common characters

Many common characters have a shorter input sequence than the corresponding TeX command:

• Arrows: \r- for →. You can replace r with another direction: u, d, l. Eg. \d- for ↓. Replace - with = or ==
to get a double and triple arrows.

• Greek letters can be input by \G followed by the first character of the letters Latin name. Eg. \Gl will input 𝜆
while \GL will input Λ.

• Negation: you can get the negated form of many characters by appending n to the name. Eg. while \ni inputs
, \nin will input .

• Subscript and superscript: you can input subscript or superscript forms by prepending the character with
\_ (subscript) or \^ (superscript). Note that not all characters have a subscript or superscript counterpart in
Unicode.

Some characters which were used in this documentation or which are commonly used in the standard library (sorted
by hexadecimal code):

Hex code Character Short key-binding TeX command
00ac ¬ \neg
00d7 × \x \times
02e2 \^s
03bb 𝜆 \Gl \lambda
041f
0432
0435
0438
043c
0440
0442
1d62 \_i
2032 \'1 \prime
207f \^n
2081 1 \_1
2082 2 \_2
2083 3 \_3
2084 4 \_4
2096 \_k
2098 \_m
2099 \_n
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Hex code Character Short key-binding TeX command
2113 (PDF TODO) \ell

Hex code Character Short key-binding TeX command
2115 \bN \Bbb{N}
2192 → \r- \to
21a6 \r-| \mapsto
2200 \all \forall
2208 \in
220b \ni
220c \nin
2218 \o \circ
2237 \::
223c \~ \sim
2248 \~~ \approx
2261 \== \equiv
2264 \<= \le
2284 \subn
2294 \lub
22a2 \|- \vdash
22a4 \top
22a5 \bot
266d \b
266f \#
27e8 \<
27e9 \>

Hex code Character Short key-binding TeX command
2983 (PDF TODO) \{{
2984 (PDF TODO) \}}

Hex code Character Short key-binding TeX command
2c7c \_j

Generating HTML

Note: This is a stub.

Generating LaTeX

Note: This is a stub.

Library Management

Agda has a simple package management system to support working with multiple libraries in different locations. The
central concept is that of a library.
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Example: Using the standard library

Before we go into details, here is some quick information for the impatient on how to tell Agda about the location of
the standard library, using the library management system.

Let’s assume you have downloaded the standard library into a directory which we will refer to by AGDA_STDLIB (as
an absolute path). A library file standard-library.agda-lib should exist in this directory, with the following
content:

name: standard-library
include: src

To use the standard library by default in your Agda projects, you have to do two things:

1. Create a file AGDA_DIR/libraries with the following content:

AGDA_STDLIB/standard-library.agda-lib

(Of course, replace AGDA_STDLIB by the actual path.)

The AGDA_DIR defaults to ~/.agda on unix-like systems and C:\Users\USERNAME\AppData\Roaming\agda
or similar on Windows. (More on AGDA_DIR below.)

Remark: The libraries file informs Agda about the libraries you want it to know about.

2. Create a file AGDA_DIR/defaults with the following content:

standard-library

Remark: The defaults file informs Agda which of the libraries pointed to by libraries should be used
by default (i.e. in the default include path).

That’s the short version, if you want to know more, read on!

Library files

A library consists of

• a name

• a set of dependencies

• a set of include paths

Libraries are defined in .agda-lib files with the following syntax:

name: LIBRARY-NAME -- Comment
depend: LIB1 LIB2

LIB3
LIB4

include: PATH1
PATH2
PATH3

Dependencies are library names, not paths to .agda-lib files, and include paths are relative to the location of the
library-file.
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Installing libraries

To be found by Agda a library file has to be listed (with its full path) in a libraries file

• AGDA_DIR/libraries-VERSION, or if that doesn’t exist

• AGDA_DIR/libraries

where VERSION is the Agda version (for instance 2.5.1). The AGDA_DIR defaults to ~/.agda on unix-like
systems and C:\Users\USERNAME\AppData\Roaming\agda or similar on Windows, and can be overridden
by setting the AGDA_DIR environment variable.

Environment variables in the paths (of the form $VAR or ${VAR}) are expanded. The location of the libraries file
used can be overridden using the --library-file=FILE command line option.

You can find out the precise location of the libraries file by calling agda -l fjdsk Dummy.agda at the
command line and looking at the error message (assuming you don’t have a library called fjdsk installed).

Note that if you want to install a library so that it is used by default, it must also be listed in the defaults file (details
below).

Using a library

There are three ways a library gets used:

• You supply the --library=LIB (or -l LIB) option to Agda. This is equivalent to adding a -iPATH for
each of the include paths of LIB and its (transitive) dependencies.

• No explicit --library flag is given, and the current project root (of the Agda file that is being loaded) or
one of its parent directories contains an .agda-lib file defining a library LIB. This library is used as if
a --library=LIB option had been given, except that it is not necessary for the library to be listed in the
AGDA_DIR/libraries file.

• No explicit --library flag, and no .agda-lib file in the project root. In this case the file AGDA_DIR/
defaults is read and all libraries listed are added to the path. The defaults file should contain a list of
library names, each on a separate line. In this case the current directory is also added to the path.

To disable default libraries, you can give the flag --no-default-libraries. To disable using libraries
altogether, use the --no-libraries flag.

Default libraries

If you want to usually use a variety of libraries, it is simplest to list them all in the AGDA_DIR/defaults file. It
has format

standard-library
library2
library3

where of course library2 and library3 are the libraries you commonly use. While it is safe to list all your
libraries in library, be aware that listing libraries with name clashes in defaults can lead to difficulties, and
should be done with care (i.e. avoid it unless you really must).

Version numbers

Library names can end with a version number (for instance, mylib-1.2.3). When resolving a library name (given
in a --library flag, or listed as a default library or library dependency) the following rules are followed:
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• If you don’t give a version number, any version will do.

• If you give a version number an exact match is required.

• When there are multiple matches an exact match is preferred, and otherwise the latest matching version is
chosen.

For example, suppose you have the following libraries installed: mylib, mylib-1.0, otherlib-2.1, and
otherlib-2.3. In this case, aside from the exact matches you can also say --library=otherlib to get
otherlib-2.3.

Upgrading

If you are upgrading from a pre 2.5 version of Agda, be aware that you may have remnants of the previous library
management system in your preferences. In particular, if you get warnings about agda2-include-dirs, you will
need to find where this is defined. This may be buried deep in .el files, whose location is both operating system and
emacs version dependant.
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Contribute

See also the HACKING file in the root of the agda repo.

Documentation

Note: This is a stub.

Documentation is written in reStructuredText format.

Code examples

You can include code examples in your documentation.

If your give the documentation file the extension .lagda.rst, code examples in the can be checked as part of the
continuous integration. This way, they will be guaranteed to always work with the latest version of Agda.

Tip: If you edit documentation files in Emacs, you can use Agda’s interactive mode to write your code examples.
Use M-x agda2-mode to switch to Agda mode, and M-x rst-mode to switch back to rST mode.

Syntax

The syntax for embedding code examples depends on:

1. Whether the code example should be visible to the reader of the documentation.

2. Whether the code example contains valid Agda code (which should be type-checked).
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Visible, checked code examples

This is code that the user will see, and that will be also checked for correctness by Agda. Ideally, all code in the
documentation should be of this form: both visible and valid.

It can appear stand-alone:

::

data Bool : Set where
true false : Bool

Or at the end of a paragraph::

data Bool : Set where
true false : Bool

Here ends the code fragment.

Result:

It can appear stand-alone:

data Bool : Set where
true false : Bool

Or at the end of a paragraph:

data Bool : Set where
true false : Bool

Here ends the code fragment.

Tip: Remember to always leave a blank like after the ::. Otherwise, the code will be checked by Agda, but it will
appear variable-width paragraph text in the documentation.

Visible, unchecked code examples

This is code that the reader will see, but will not be checked by Agda. It is useful for examples of incorrect code,
program output, or code in languages different from Agda.

.. code-block:: agda

-- This is not a valid definition

𝜔 : a → a
𝜔 x = x

.. code-block:: haskell

-- This is haskell code

data Bool = True | False
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Result:

-- This is not a valid definition

𝜔 : a → a
𝜔 x = x

-- This is haskell code

data Bool = True | False

Invisible, checked code examples

This is code that is not shown to the reader, but which is used to typecheck the code that is actually displayed.

This might be definitions that are well known enough that do not need to be shown again.

..
::
data Nat : Set where
zero : Nat
suc : Nat → Nat

::

add : Nat → Nat → Nat
add zero y = y
add (suc x) y = suc (add x y)

Result:

add : Nat → Nat → Nat
add zero y = y
add (suc x) y = suc (add x y)

File structure

Documentation literate files (.lagda.*) are type-checked as whole Agda files, as if all literate text was replaced by
whitespace. Thus, indentation is interpreted globally.

Namespacing

In the documentation, files are typechecked starting from the doc/user-manual/ root. For example, the file doc/user-
manual/language/data-types.lagda.rst should start with a hidden code block declaring the name of the module as
language.data-types:

..
::
module language.data-types where
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Scoping

Sometimes you will want to use the same name in different places in the same documentation file. You can do this by
using hidden module declarations to isolate the definitions from the rest of the file.

..
::
module scoped-1 where

::

foo : Nat
foo = 42

..
::
module scoped-2 where

::
foo : Nat
foo = 66

Result:

foo : Nat
foo = 42
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The Agda License

Copyright (c) 2005-2015 Ulf Norell, Andreas Abel, Nils Anders Danielsson, Andrés Sicard-Ramírez, Dominique De-
vriese, Péter Divianszki, Francesco Mazzoli, Stevan Andjelkovic, Daniel Gustafsson, Alan Jeffrey, Makoto Takeyama,
Andrea Vezzosi, Nicolas Pouillard, James Chapman, Jean-Philippe Bernardy, Fredrik Lindblad, Nobuo Yamashita,
Fredrik Nordvall Forsberg, Patrik Jansson, Guilhem Moulin, Stefan Monnier, Marcin Benke, Olle Fredriksson, Darin
Morrison, Jesper Cockx, Wolfram Kahl, Catarina Coquand

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The file src/full/Agda/Utils/Parser/ReadP.hs is Copyright (c) The University of Glasgow 2002 and is licensed under a
BSD-like license as follows:

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
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THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW AND
THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The file src/full/Agda/Utils/Maybe/Strict.hs (and the following license text?) uses the following license:

Copyright (c) Roman Leshchinskiy 2006-2007

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the author nor the names of his contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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Indices and tables

• genindex

• search

101



Agda Documentation, Release 2.5.2

102 Chapter 7. Indices and tables



Bibliography

[McBride2004] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 2004.
http://strictlypositive.org/vfl.pdf.

103

http://strictlypositive.org/vfl.pdf

	Overview
	Getting Started
	Installation

	Language Reference
	Abstract definitions
	Built-ins
	Coinduction
	Copatterns
	Core language
	Data Types
	Foreign Function Interface
	Function Definitions
	Function Types
	Implicit Arguments
	Instance Arguments
	Irrelevance
	Lambda Abstraction
	Local Definitions: let and where
	Lexical Structure
	Literal Overloading
	Mixfix Operators
	Module System
	Mutual Recursion
	Pattern Synonyms
	Positivity Checking
	Postulates
	Pragmas
	Record Types
	Reflection
	Rewriting
	Safe Agda
	Sized Types
	Telescopes
	Termination Checking
	Universe Levels
	With-Abstraction
	Without K

	Tools
	Automatic Proof Search (Auto)
	Command-line options
	Compilers
	Emacs Mode
	Generating HTML
	Generating LaTeX
	Library Management

	Contribute
	Documentation

	The Agda License
	Indices and tables
	Bibliography

